Answer:
<u>EFFECTS: ( doughts)</u>
- There would be less water in the river for you and other people who live along the river to use.
- If we use too much water during times of normal rainfall, we might not have enough water when a drought happens.
<u>EFFECTS:( FLOODS)</u>
- The immediate impacts of flooding include loss of human life, damage to property, destruction of crops, loss of livestock, and deterioration of health conditions owing to waterborne diseases.
- power plants, roads and bridges are damaged and disrupted, some economic activities may come to a standstill, people are forced to leave their homes and normal life is disrupted.
How to prevent from flooding is :
- Construct buildings above flood levels.
- Tackle climate change
How to prevent from droughts :
- drought trends that may occur based on statistical and actual weather forecasts.
- In the U.S., the U.S. Drought Monitor provides a day-by-day visual of the drought conditions around the country.
* Hopefully this helps:) Mark me the brainliest:)!!!
~234483279c20~
Answer:
The answer to the question is
The distance d, which locates the point where the light strikes the bottom is 29.345 m from the spotlight.
Explanation:
To solve the question we note that Snell's law states that
The product of the incident index and the sine of the angle of incident is equal to the product of the refractive index and the sine of the angle of refraction
n₁sinθ₁ = n₂sinθ₂
y = 2.2 m and strikes at x = 8.5 m, therefore tanθ₁ = 2.2/8.5 = 0.259 and
θ₁ = 14.511 °
n₁ = 1.0003 = refractive index of air
n₂ = 1.33 = refractive index of water
Therefore sinθ₂ =
=
= 0.1885 and θ₂ = 10.86 °
Since the water depth is 4.0 m we have tanθ₂ =
or x₂ =
=
= 20.845 m
d = x₂ + 8.5 = 20.845 m + 8.5 m = 29.345 m.
Answer:
There is an interval of 24.28s in which the rocket is above the ground.
Explanation:





From Kinematics, the position
as a function of time when the engine still works will be:

At what time the altitud will be
?
⇒ 
Using the quadratic formula:
.
How much time does it take for the rocket to touch the ground? No the function of position is:

Where our new initial position is
, the velocity when the engine breaks is
and the only acceleration comes from gravity (which points down).
Now, when the rocket tounches the ground:
Again, using the quadratic ecuation:

Now, the total time from the moment it takes off and the moment it tounches the ground will be:
.
We are given that a 500 kg object is hanging from a spring. To determine the amount the spring is stretched we will use Hook's law, which states the following:

Where:

Since the object is hanging the only force acting on the spring is the weight of the object. The weight of the object is:

Where:

Plugging in the values we get:

Solving the operations:

Now we solve for "x" from Hook's law by dividing both sides by "k":

Now we plug in the known values:

Solving the operations:

Therefore, the spring is stretched by 5.4 meters.
Answer:
300 m/s
Explanation:
2d = vt
v = 2d/t
v = 2×90/.3
v=300 m/s
d = distance
t = time
v = velocity/speed of sound