Answer:
560 m
Explanation:
The speed of sound in air is approximately:
v ≈ v₀ + 0.6T
where v₀ is the speed of sound at 0°C (273 K) in m/s, and T is the temperature in Celsius.
The speed of sound at 20°C at that altitude is:
v ≈ 327 + 0.6(20)
v ≈ 339 m/s
The sound travels from the hikers to the mountain and back again, so it travels twice the distance.
339 m/s = 2d / 3.3 s
2d = 1118.7 m
d = 559.35 m
Rounding, the mountain is approximately 560 m away.
Answer:
98,000 pa
Explanation:
The formula for water pressure is as follows:

Where <em>p </em>is the density of water (in kg/m3), <em>g </em>is the gravitational field strength, and <em>h </em>is the height of the water.
The density of water is 1000kg/m3, the gravitational field strength is 9.8, and the height is 10. Substituting in these values:


Answer:
Explanation:
- given S = distance from the first = 3.20cm = 0.032m, t = 1.30×10−8 s
- acceleration = 0.032 X 2 /(1.30×10−8)^2
a = 3.79 x 10^14m/s^2
E = ma /q = 9.11 x 10^-31 x 3.79 x 10^14 / 1.6 x 10^-19
E = magnitude of this electric field. = 2156.3N/C
b) Find the speed of the electron when it strikes the second plate ; V^2 = 2as
= 2 X 3.79 x 10^14 X 0.032
= 4.92 X 10^6m/s
Answer:
Conduction is usually faster in certain solids and liquids than in gases. Materials that are good conductors of thermal energy are called thermal conductors. Metals are especially good thermal conductors because they have freely moving electrons that can transfer thermal energy quickly and easily.
Heat transfer by convection happens through the air, and there are millions of minuscule air spaces between the fibers. Heat transfer by radiation is also slow since one fiber must radiate its heat to another.
When we give heat then kinetic energy is increase and this heat is transferred from hot metal to cold metal through this free electrons. As in insulator the free electrons are negligible so that the heat is not transferred from hot junction to cold junction due to absence of this free electrons.
Explanation:
maek me as brainliest
Wavelength is the distance between 2 adjacent points in a wave
we can use the following equation to find the wavelength of a sound wave
wavelength = speed / frequency
frequency is the number of waves passing a point in 1 second
substituting the values in the equation
wavelength = 343 m/s / 686 Hz
wavelength = 0.5 m
wavelength of the wave is 0.5 m