Answer:
Being an elastic object, rubber ball will be an ideal choice as it will bounce off the bowling pit and will experience a large change in momentum in comparison with the beanbag which will either slow down or come to a halt upon hitting a bowling pit. That is why rubber ball will experience a greater impulse and the bowling pin will experience the negative impulse of the rubber ball.
For Rubber Ball
Upon elastic collision it will reverses the direction and move with velocity equal or less then original
change in momentum = P

For Beanbag
value of impulse will large if velocity is zero.

Explanation:
I'm pretty sure it's sunscreen
Answer:
3.25 × 10^7 m/s
Explanation:
Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference (ΔV)
Ek = 1/2 mv2 = qΔV .................. 1
Given that V is the electron speed in m/s
Charge of electron = 1.60217662 × 10-19 coulombs
Mass of electron = 9.109×10−31 kilograms
ΔV = 3.0kV = 3000V
Make V the subject of the formula in eqaution 1
V = sqr root 2qΔV/m
V = 2 × 1.60217662 × 10-19 × 3000 / 9.109×10−31
V = 3.25 × 10^7 m/s
Answer:Sound waves are longitudinal waves that is, are transmitted in the same direction of oscillation of the particles in the medium. Electromagnetic waves are transverse ie, the electric and magnetic fields, which are perpendicular to each other, oscillate perpendicularly to the direction of wave propagation.
Explanation:
Weight of the barbell W = 200 Ndistance of the joint is r = 40 cm = 0.4 mtorque created by the weight at the joint is τ = F*r = 200 N*0.4 m = 80 N.mat equilibrium condition , Στ = force*distance - 80 N.m = 0 F'*0.4 - 80 N.m = 0 F'*0.4 = 80 force F' = 200 N