Answer:
The net power needed to change the speed of the vehicle is 275,000 W
Explanation:
Given;
mass of the sport vehicle, m = 1600 kg
initial velocity of the vehicle, u = 15 m/s
final velocity of the vehicle, v = 40 m/s
time of motion, t = 4 s
The force needed to change the speed of the sport vehicle;

The net power needed to change the speed of the vehicle is calculated as;
![P_{net} = \frac{1}{2} F[u + v]\\\\P_{net} = \frac{1}{2} \times 10,000[15 + 40]\\\\P_{net} = 275,000 \ W](https://tex.z-dn.net/?f=P_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20F%5Bu%20%2B%20v%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2010%2C000%5B15%20%2B%2040%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20275%2C000%20%5C%20W)
Well I don't know. Let's actually LOOK at the picture and see if that helps.
A, B, C, and D all have the same TOTAL length, but A has the most waves crammed into that same total length.
By golly, that means the length of <u><em>each</em></u> wave in A must be shorter than each wave in B, C, or D.
The correct choice is <em> A </em>. Looking at the picture did the trick !
Well the basic equation for velocity is v=d/t where d is distance and t is time. So v=2m/50s and the answer is v=0.04meter/second.