Answer:
A). 1.9 cm
Explanation:
m = Mass of brick = 12 kg
g = Acceleration due to gravity = 9.81 m/s²
r = Radius of hose
A = Area = 
F = Force = 
Let us assume that the pressure required to lift the brick would be atmospheric pressure

The radius of the hose should be 1.9 cm
The correct answer is 10 billion years. The Sun is expected to undergo hydrogen fusion for a total of 10 billion years. The Sun generates its energy by nuclear fusion of hydrogen and produces helium nucleus. It fuses 620 million metric tons every second.
Answer:
0.782 s
Explanation:
The water flows horizontally from the hose, so its initial vertical velocity is 0.
Given:
y₀ = 3 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 m = 3 m + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 0.782 s
Round as needed.
the answer is c and if I help you thank me
To solve this problem, we should recall the law of
conservation of energy. That is, the heat lost by the aluminium must be equal
to the heat gained by the cold water. This is expressed in change in enthalpies
therefore:
- ΔH aluminium = ΔH water
where ΔH = m Cp (T2 – T1)
The negative sign simply means heat is lost. Therefore we
calculate for the mass of water (m):
- 0.5 (900) (20 – 200) = m (4186) (20 – 0)
m = 0.9675 kg
Using same mass of water and initial temperature, the final
temperature T of a 1.0 kg aluminium block is:
- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)
- 900 T + 180,000 = 4050 T
4950 T = 180,000
T = 36.36°C
The final temperature of the water and block is 36.36°C