Answer:
C. 481 °C.
Explanation:
The amount of heat absorbed by water = the amount of heat released by copper.
- To find the amount of heat, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of energy.
m is the mass of substance.
c is the specific heat capacity.
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T).
<em>∵ Q of copper = Q of water</em>
∴ - (m.c.ΔT) of copper = (m.c.ΔT) of water
m of copper = 220.0 g, c of copper = 0.39 J/g °C, ΔT of copper = final T - initial T = 42.00 °C - initial T.
m of water = 500.0 g, c of water = 4.18 J/g °C, ΔT of water = final T - initial T = 42.00 °C - 24.00 °C = 18.00 °C.
∴ - (220.0 g)( 0.39 J/g °C)(42.00 °C - Ti) = (500.0 g)(4.18 J/g °C)(18.00 °C)
∴ - (85.8)(42.00 °C - Ti) = 37620.
∴ (42.00 °C - Ti) = 37620/(- 85.8) = - 438.5.
∴ Ti = 42.00 °C + 438.5 = 480.5°C ≅ 481°C.
<em>So, the right choice is: C. 481 °C.</em>