Answer:
The ratio of the orbital time periods of A and B is 
Solution:
As per the question:
The orbit of the two satellites is circular
Also,
Orbital speed of A is 2 times the orbital speed of B
(1)
Now, we know that the orbital speed of a satellite for circular orbits is given by:

where
R = Radius of the orbit
Now,
For satellite A:

Using eqn (1):
(2)
For satellite B:
(3)
Now, comparing eqn (2) and eqn (3):

Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
Answer:
v = 1.98 mph
Explanation:
Given that,
Speed to travel one mile is 100 mph
Speed to travel another mile is 1 mph
The formula used to find your average speed is given by :

Putting the values, we get :

v = 1.98 mph
So, yours average speed is 1.98 mph.