Answer:
C) In[reactant] vs. time
Explanation:
For a first order reaction the integrated rate law equation is:

where A(0) = initial concentration of the reactant
A = concentration after time 't'
k = rate constant
Taking ln on both sides gives:
![ln[A] = ln[A]_{0}-kt](https://tex.z-dn.net/?f=ln%5BA%5D%20%3D%20ln%5BA%5D_%7B0%7D-kt)
Therefore a plot of ln[A] vs t should give a straight line with a slope = -k
Hence, ln[reactant] vs time should be plotted for a first order reaction.
Answer:
995.313KW
Explanation:
the explanation is in the picture
please like and Mark as brainliest
It’s the first 1 M yea it’s the first one
The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M
Explanation:
According to the Henderson-Hasselbalch equation, the relation between pH and
is as follows.
pH = 
where, pH = 7.4 and
= 7.21
As here, we can use the
nearest to the desired pH.
So, 7.4 = 7.21 + 
0.19 = 
= 1.55
1 mM phosphate buffer means
+
= 1 mM
Therefore, the two equations will be as follows.
= 1.55 ............. (1)
+
= 1 mM ........... (2)
Now, putting the value of
from equation (1) into equation (2) as follows.
1.55
= 1 mM
2.55
= 1 mM
= 0.392 mM
Putting the value of
in equation (1) we get the following.
0.392 mM +
= 1 mM
= (1 - 0.392) mM
= 0.608 mM
Thus, we can conclude that concentration of the acid must be 0.608 mM.