Answer:
A) Fb = 671.3 N
B) The diver will sink.
Explanation:
A)
The buoyant force applied on an object by a fluid is given by the following formula:
Fb = Vρg
where,
Fb = Buoyant Force = ?
V = Volume of the water displaced by the object = 68.5 L = 0.0685 m³
ρ = Density of Water = 1000 kg/m³
g = 9.8 m/s²
Therefore,
Fb = (0.0685 m³)(1000 kg/m³)(9.8 m/s²)
<u>Fb = 671.3 N</u>
B)
Now, in order to find out whether the diver sinks or float, we need to find weight of the diver with gear.
W = mg = (71.8 kg)(9.8 m/s²)
W = 703.64 N
Since, W > Fb. Therefore, the downward force of weight will make the diver sink.
<u>The diver will sink.</u>
Answer:193.90 m/s
Explanation:
Given
launch angle 
launch velocity 
Horizontal velocity of the shell after 
time of flight of Projectile 


i.e. projectile is declining as 
but horizontal component of velocity will remain same as there is no opposing force in horizontal direction
Horizontal component of velocity is
Answer:
The entropy change of the Universe that occurs is 19.346 J/K
Explanation:
Given;
temperature of the sun,
= 5,300 K
temperature of the Earth,
= 293 K
radiation energy transferred by the sun to the earth, E = 6000 J
The sun loses Q of heat and therefore decreases its entropy by the amount

The earth gains Q of heat and therefore increases its entropy by the amount

The total entropy change is:

Therefore, the entropy change of the Universe that occurs is 19.346 J/K
Answer:
Higher, Windward side, Condenses
Explanation:
The Windward side refers to that side of a mountain that faces the direction from which the wind is blowing. In this direction, the moisture containing hot air blowing from a distant place moves upward and strikes the mountain at a greater height, where the air mass is thin and the temperature is relatively cold. As the temperature and pressure decrease with altitude, the hot uprising air cools and gradually condenses. This results in the occurrence of high precipitation over this region i.e. the windward side of the mountain.
Therefore, the precipitation is always higher on the windward side of a mountain as the hot air undergoes condensation at greater height as it rises upward.
Answer:
Stress is the force applied to an object. In geology, stress is the force per unit area that is placed on a rock. Four types of stresses act on materials.
A deeply buried rock is pushed down by the weight of all the material above it. Since the rock cannot move, it cannot deform. This is called confining stress.
Compression squeezes rocks together, causing rocks to fold or fracture (break) (Figure below). Compression is the most common stress at convergent plate boundaries.
Explanation: