To determine the centroid of the object first moment of area is used.
To predict the resistance of a shape to bending and deflection which are directly proportional, second moment of area is used.
Answer:
(a) the speed of the block after the bullet embeds itself in the block is 3.226 m/s
(b) the kinetic energy of the bullet plus the block before the collision is 500J
(c) the kinetic energy of the bullet plus the block after the collision is 16.13J
Explanation:
Given;
mass of bullet, m₁ = 0.1 kg
initial speed of bullet, u₁ = 100 m/s
mass of block, m₂ = 3 kg
initial speed of block, u₂ = 0
Part (A)
Applying the principle of conservation linear momentum, for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
where;
v is the speed of the block after the bullet embeds itself in the block
(0.1 x 100) + (3 x 0) = v (0.1 + 3)
10 = 3.1v
v = 10/3.1
v = 3.226 m/s
Part (B)
Initial Kinetic energy
Ki = ¹/₂m₁u₁² + ¹/₂m₂u₂²
Ki = ¹/₂(0.1 x 100²) + ¹/₂(3 x 0²)
Ki = 500 + 0
Ki = 500 J
Part (C)
Final kinetic energy
Kf = ¹/₂m₁v² + ¹/₂m₂v²
Kf = ¹/₂v²(m₁ + m₂)
Kf = ¹/₂ x 3.226²(0.1 + 3)
Kf = ¹/₂ x 3.226²(3.1)
Kf = 16.13 J
Answer:
Hot water rises and cold water sinks is a model of thermal energy transfer by conduction.
An interesting problem, and thanks to the precise heading you put for the question.
We will assume zero air resistance.
We further assume that the angle with vertical is t=53.13 degrees, corresponding to sin(t)=0.8, and therefore cos(t)=0.6.
Given:
angle with vertical, t = 53.13 degrees
sin(t)=0.8; cos(t)=0.6;
air-borne time, T = 20 seconds
initial height, y0 = 800 m
Assume g = -9.81 m/s^2
initial velocity, v m/s (to be determined)
Solution:
(i) Determine initial velocity, v.
initial vertical velocity, vy = vsin(t)=0.8v
Using kinematics equation,
S(T)=800+(vy)T+(1/2)aT^2 ....(1)
Where S is height measured from ground.
substitute values in (1): S(20)=800+(0.8v)T+(-9.81)T^2 =>
v=((1/2)9.81(20^2)-800)/(0.8(20))=72.625 m/s for T=20 s
(ii) maximum height attained by the bomb
Differentiate (1) with respect to T, and equate to zero to find maximum
dS/dt=(vy)+aT=0 =>
Tmax=-(vy)/a = -0.8*72.625/(-9.81)= 5.9225 s
Maximum height,
Smax
=S(5.9225)
=800+(0.8*122.625)*(5.9225)+(1/2)(-9.81)(5.9225^2)
= 972.0494 m
(iii) Horizontal distance travelled by the bomb while air-borne
Horizontal velocity = vx = vcos(t) = 0.6v = 43.575 m/s
Horizontal distace travelled, Sx = (vx)T = 43.575*20 = 871.5 m
(iv) Velocity of the bomb when it strikes ground
vertical velocity with respect to time
V(T) =vy+aT...................(2)
Substitute values, vy=58.1 m/s, a=-9.81 m/s^2
V(T) = 58.130 + (-9.81)T =>
V(20)=58.130-(9.81)(20) = -138.1 m/s (vertical velocity at strike)
vx = 43.575 m/s (horizontal at strike)
resultant velocity = sqrt(43.575^2+(-138.1)^2) = 144.812 m/s (magnitude)
in direction theta = atan(43.575,138.1)
= 17.5 degrees with the vertical, downward and forward. (direction)
The ball in the air is for <u>0.319 sec.</u>
<u />
The horizontal pace of a projectile is regular (in no way converting in value), and there's a vertical acceleration because of gravity; its cost is 9.8 m/s/s, down, The vertical speed of a projectile changes via nine.8 m/s every second, The horizontal motion of a projectile is impartial to its vertical movement.
Projectile motion is a form of motion experienced with the aid of an object or particle that is projected in a gravitational field, such as from Earth's floor, and movements alongside a curved route below the action of gravity best.
Projectile motion is the movement of an object thrown (projected) into the air. After the initial force that launches the item, it most effectively reports the pressure of gravity. The object is known as a projectile, and its route is called its trajectory.
<u />
<u>Calculate:-</u>
<u />
H = ut + 1/2 gt²
Since the vertical initial velocity is 0.
H = 0 +gt²
t = 
= 
=<u> 0.319 sec.</u>
Learn more about projectile motion here:-brainly.com/question/10680035
#SPJ4