Answer:
As the capacitor is discharging, the current is increasing
Explanation:
Lets take
C= Capacitance
L=Inductance
V=Voltage
I= Current
The total energy E given as

We know that total energy E is conserved so when electric energy 1/2 CV² decreases then magnetic energy 1/2 IL² will increases.
It means that when charge on the capacitor decreases then the current will increase.
As the capacitor is discharging, the current is increasing
-reflection and refraction of light
-dispersion of light
-absorption of light
-polarization of light
Answer:
Explanation:
reading of scale = reaction force of surface R
centripetal force = R - mg = m v² / R , m is mass , v is velocity and R is radius of the circular path .
R = mg + m v² / R
given ,
m v² / R = .80 mg
v² = .80 x g x R
= .8 x 9.8 x 9 = 70.56
v = 8.4 m /s
Answer:
E. Zero Maximum
Explanation:
At the point of maximum displacement, the speed is zero while the restoring force is maximum. In fact:
- The restoring force is given by
, where k is the spring constant and x is the displacement - at the point of maximum displacement, x is maximum, so F is maximum as well
- the total energy of the system is sum of kinetic energy and elastic potential energy:

where m is the mass of the system and v is the speed. Since E (the total energy) is constant due to the law of conservation of energy, we have that when K increases, U decreases, and viceversa. As a result, when x increases, v decreases, and viceversa. At the point of maximum displacement, x is maximum, so v will have its minimum value (which is zero, since the system is changing direction of motion).
Answer:
28 degree C
Explanation:
We are given that




We have to find the temperature on a spring day when resistance is 215.1 ohm.
We know that

Using the formula




Hence, the temperature on a spring day 28 degree C.