
- Speed of the mobile = 250 m/s
- It starts decelerating at a rate of 3 m/s²
- Time travelled = 45s

- Velocity of mobile after 45 seconds

We can solve the above question using the three equations of motion which are:-
- v = u + at
- s = ut + 1/2 at²
- v² = u² + 2as
So, Here a is acceleration of the body, u is the initial velocity, v is the final velocity, t is the time taken and s is the displacement of the body.

We are provided with,
- u = 250 m/s
- a = -3 m/s²
- t = 45 s
By using 1st equation of motion,
⇛ v = u + at
⇛ v = 250 + (-3)45
⇛ v = 250 - 135 m/s
⇛ v = 115 m/s
✤ <u>Final</u><u> </u><u>velocity</u><u> </u><u>of</u><u> </u><u>mobile</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u>5</u><u> </u><u>m</u><u>/</u><u>s</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
the distance between the submarine and the ocean floor is 11,250 m
Explanation:
Given;
speed of the wave, v = 1500 m/s
time of motion of the wave, t = 15 s
The time taken to receive the echo is calculated as;

Therefore, the distance between the submarine and the ocean floor is 11,250 m
Answer:
true
Explanation:
free fall is said to be the downward movement of an object under the force of gravity only
Answer. Second Option: .85p_o=p_o e^-.00012h
Solution:
P(h)=Po e^(-0.00012h)
Air pressure: P(h)
Height above the surface of the Earth (in meters): h
Air pressure at the sea level: Po
Height at which air pressure is 85% of the air pressure at sea level:
h=?, P(h)=85% Po
P(h)=(85/100) Po
P(h)=0.85 Po
Replacing P(h) by 0.85 Po in the formula above:
P(h)=Po e^(-0.00012h)
0.85 Po = Po e^(-0.00012h)