Properties of a compound is completely different from their elements.
Water is composed by hydrogen and oxygen.
For example, the boiling point of oxygen is - 183 °C and hydrogen is - 253 °C, meanwhile, water has a boiling point of 100°C
Another example is when you put a burning wooden splint into oxygen, it burns more brightly. Put it in hydrogen, you may hear a "pop" sound, or even explode when large amount of hydrogen. But if u put a burning splint in water, it goes off.
For a gas containing 80% CH4 and 20% He is sent through a quart diffusion tube, the composition is mathematically given as
%He=12.5%
%CH4=87.5%
<h3>What is the
composition of the waste gas if 100 kg moles of gas are processed per minute?</h3>
Generally, the equation for the Material balance is mathematically given as
F=R+W
Therefore
100=0.20*1000+W
W=80kmol/min
In conclusion, waste gas compose
2.0/100*100=50/100*20+%*80
Hence
%He=12.5%
%CH4=87.5%
Read more about Chemical reaction
brainly.com/question/16416932
Answer:
Redox
Explanation:
Reduction is gain of electrons
oxidation is loss of electrons
Answer is: sodium (Na) and iodine (I₂).
<span>
First ionic bonds in this salt are separeted
because of heat:
</span>NaI(l) → Na⁺(l) + I⁻(l).
Reaction of reduction
at cathode(-): Na⁺(l) + e⁻ → Na(l) /×2.
2Na⁺(l) + 2e⁻ → 2Na(l).
Reaction of oxidation
at anode(+): 2I⁻(l) → I₂(l) + 2e⁻.
The anode is positive
and the cathode is negative.
Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation: