<span>Matter of all types have gravity, which causes it to attract to each other. The most efficient way for all this matter to congregate is the sphere. As they consolidate, they form the shape. As they compress, temperatures in the center of the mass start to go up and if it hits the proper point, it can ignite and become a star.</span>
Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Answer:
4.15 m/s
Explanation:
Its given that acceleration is 0.1 m/s² with a direction opposite to the velocity. Since, the direction of acceleration is opposite to the velocity, this gives us a hint that the velocity is decreasing and so acceleration would be negative.
i.e.
acceleration = a = - 0.1 m/s²
Distance covered = S = 6m
Velocity after covering 6 meters = Final velocity =
= 4 m/s
We need to find the initial speed, which will be the same as the magnitude of initial velocity.
Initial velocity =
= ?
3rd equation of motion relates the acceleration, distance, final velocity and initial velocity as:
![2aS = (v_{f})^{2}-(v_{i})^{2}](https://tex.z-dn.net/?f=2aS%20%3D%20%28v_%7Bf%7D%29%5E%7B2%7D-%28v_%7Bi%7D%29%5E%7B2%7D)
Using the known values in the formula, we get:
![2(-0.1)(6)=(4)^{2}- (v_{i})^{2}\\\\ (v_{i})^{2}=16+1.2\\\\ (v_{i})^{2}=17.2\\\\ v_{i}=4.15](https://tex.z-dn.net/?f=2%28-0.1%29%286%29%3D%284%29%5E%7B2%7D-%20%28v_%7Bi%7D%29%5E%7B2%7D%5C%5C%5C%5C%20%28v_%7Bi%7D%29%5E%7B2%7D%3D16%2B1.2%5C%5C%5C%5C%20%28v_%7Bi%7D%29%5E%7B2%7D%3D17.2%5C%5C%5C%5C%20v_%7Bi%7D%3D4.15)
Thus, the initial speed of the ball was 4.15 m/s
Can you further elaborate this isn't making much sense my mans
Answer:
a)906.5 Nm^2/C
b) 0
c) 742.56132 N•m^2/C
Explanation:
a) The plane is parallel to the yz-plane.
We know that
flux ∅= EAcosθ
3.7×1000×0.350×0.700=906.5 N•m^2/C
(b) The plane is parallel to the xy-plane.
here theta = 90 degree
therefore,
0 N•m^2/C
(c) The plane contains the y-axis, and its normal makes an angle of 35.0° with the x-axis.
therefore, applying the flux formula we get
3.7×1000×0.3500×0.700×cos35°= 742.56132 N•m^2/C