Explanation:
Acceleration is defined as the change in velocity over time.
When there is an increment or increase in the magnitude of velocity of a moving body then it is known as positive acceleration.
Whereas when there is a decrease in magnitude of velocity of a moving body then it is known as negative acceleration.
Thus, we can conclude that positive acceleration occurs when an object speeds up.
Answer:
0.16 m
Explanation:
A rectangular gasoline tank can hold 50.0 kg of gasoline when full, and the density of gasoline is 6.8 × 10² kg/m³. We can find the volume occupied by the gasoline (volume of the tank).
50.0 kg × (1 m³/6.8 × 10² kg) = 0.074 m³
The volume of the rectangular tank is:
volume = width × length × depth
depth = volume / width × length
depth = 0.074 m³ / 0.500 m × 0.900 m
depth = 0.16 m
Answer:
I think its the last one
Explanation:
The particles always move perpendicular to the direction of the wave.
Answer:
a) v₂ = 30 m/s
b) m₁ = 12600 kg
c) m₂ = 12600 kg
Explanation:
a)
Using the continuity equation:

where,
A₁ = Area of inlet = π(0.15 m)² = 0.07 m²
A₂ = Area of outlet = π(0.05 m)² = 0.007 m²
v₁ = speed at inlet = 3 m/s
v₂ = speed at outlet = ?
Therefore,

<u>v₂ = 30 m/s</u>
<u></u>
b)

where,
m₁ = mass of water flowing in = ?
ρ = density of water = 1000 kg/m³
t = time = 1 min = 60 s
Therefore,

<u>m₁ = 12600 kg</u>
<u></u>
c)

where,
m₂ = mass of water flowing out = ?
ρ = density of water = 1000 kg/m³
t = time = 1 min = 60 s
Therefore,

<u>m₂ = 12600 kg</u>
Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²