The correct answer of the given question above would be option B. The statement that is not correct is that, a steady magnetic field produces a steady current. The rest of the statements are all correct. <span>An unchanging/static magnetic field (relative to a wire/circuit) induces zero current.</span>
Answer:
Magnitude of displacement = 2.07 km
Magnitude of average velocity = 1.17 kmph
Explanation:
Let east represent positive x axis and north represent positive y axis.
A bird watcher meanders through the woods, walking 1.93 km due east, 1.03 km due south, and 3.84 km in a direction 52.8 ° north of west.
1.93 km due wast
s ₁ = 1.93 i km
1.03 km due south
s₂ = -1.03 j km
3.84 km in a direction 52.8 ° north of west
s₃ = -3.84 cos 52.8 i + 3.84 sin 52.8 j = -2.32 i + 3.06 j km
Total displacement
s = s ₁+ s₂+ s₃ = 1.93 i - 1.03 j -2.32 i + 3.06 j = -0.39 i + 2.03 j
Magnitude of displacement, 
Time taken = 1.771 hour
Magnitude of average velocity, 
Nearly equal the output work is greater than the input work because of friction.All machines use some amount of input work to overcome friction.The only way to increase the work output is to increase the work you put into the machine.You cannot get more work out of a machine than you put into it.
Answer:
The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Explanation:
Given that,
Mass of proton 
Speed
We need to calculate the kinetic energy for non relativistic
Using formula of kinetic energy

Put the value into the formula


We need to calculate the kinetic energy for relativistic
Using formula of kinetic energy



Hence, The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Answer:
40 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Work done is simply defined as the product of force and distance moved in the direction of the force. Mathematically, we can express the Workdone as:
Workdone = force × distance
Wd = F × s
With the above formula, we can obtain the workdone as follow:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Wd = F × s
Wd = 10 × 4
Wd = 40 J
Thus, 40 J of work was done.