Answer:
7200N
Explanation:
Centripetal force is directly proportional to the product of the mass and the square of the velocity and inversely proportional to the radius given.
The <u>average</u> acceleration for an object undergoing this change in velocity is
(12.5 m/s - 8.3 m/s) / (1.24 s) = (4.2 m/s) / (1.24 s) ≈ 3.4 m/s²
The height, h to which the package of mass m bounces to depends on its initial velocity, v and the acceleration due to gravity, g and is given below:

<h3>What are perfectly elastic collision?</h3>
Perfectly elastic collisions are collisions in which the momentum as well as the energy of the colliding bodies is conserved.
In perfectly elastic collisions, the sum of momentum before collision is equal to the momentum after collision.
Also, the sum of kinetic energy before collision is equal to the sum of kinetic energy after collision.
Since some of the Kinetic energy is converted to potential energy of the body;


Therefore, the height to which the package m bounces to depends on its initial velocity and the acceleration due to gravity.
Learn more about elastic collisions at: brainly.com/question/7694106
I’m sorry i haven’t found the answer to this
Answer:
Frequency = f = 10.0394 (1/s)
Explanation:
The frequency of oscillation of the system is given by the action:
f= √(k/m)
f= system count
k = spring constant
m = mass connected to the spring
Therefore the frequency will be:
f= √(k/m) = √(383(N/m) / (3.8kg))= √( 100.7895 (kg×m/s²)/(kg ) =
= √( 100.7895 (1/s²) = 10.0394 (1/s)