Answer: A 100-lb child stands on a scale while riding in an elevator. Then, the scale reading approaches to 100lb, while the elevator slows to stop at the lowest floor
Explanation: To find the correct answer, we need to know more about the apparent weight of a body in a lift.
<h3>What is the apparent weight of a body in a lift?</h3>
- Consider a body of mass m kept on a weighing machine in a lift.
- The readings on the machine is the force exerted by the body on the machine(action), which is equal to the force exerted by the machine on the body(reaction).
- The reaction we get as the weight recorded by the machine, and it is called the apparent weight.
<h3>How to solve the question?</h3>
- Here we have given with the actual weight of the body as 100lbs.
- This 100lb child is standing on the scale or the weighing machine, when it is riding .
- During this condition, the acceleration of the lift is towards downward, and thus, a force of ma .
- There is also<em> mg </em>downwards and a normal reaction in the upward direction.
- when we equate both the upward force and downward force, we get,
i.e. during riding the scale reads a weight less than that of actual weight.
- When the lift goes slow and stops the lowest floor, then the acceleration will be approaches to zero.
Thus, from the above explanation, it is clear that ,when the elevator moves to the lowest floor slowly and stops, then the apparent weight will become the actual weight.
Learn more about the apparent weight of the body in a lift here:
brainly.com/question/28045397
#SPJ4
Answer:
Explanation:
90 rpm = 90 / 60 rps
= 1.5 rps
= 1.5 x 2π rad /s
angular velocity of flywheel
ω = 3π rad /s
Let I be the moment of inertia of flywheel
kinetic energy = (1/2) I ω²
(1/2) I ω² = 10⁷ J
I = 2 x 10⁷ / ω²
=2 x 10⁷ / (3π)²
= 2.2538 x 10⁵ kg m²
Let radius of wheel be R
I = 1/2 M R² , M is mass of flywheel
= 1/2 πR² x t x d x R² , t is thickness , d is density of wheel .
1/2 πR⁴ x t x d = 2.2538 x 10⁵
R⁴ = 2 x 2.2538 x 10⁵ / πt d
= 4.5076 x 10⁵ / 3.14 x .1 x 7800
= 184
R= 3.683 m .
diameter = 7.366 m .
b ) centripetal accn required
= ω² R
= 9π² x 3.683
= 326.816 m /s²
Answer:
Work done.
Explanation:
The skater who lifts has to overcome the partner's weight. When lifted up by 1 meter, her potential energy increases by (mass)x(gravitational acceleration)x(1meter), which is the amount of work done.
(This all assumes lifting vertically and no other forces being part of the picture)
Work = (force) x (distance)
80 J = (force) x (4 m)
Force = (80 J) / (4 m) = 20 N
That's IF the force was in the same direction as the 4m of motion.
If the force was kind of slanted, then it had to be stronger, and
it had a component of 20N in the direction of the motion.