Answer:
3.84 Ω
Explanation:
From the question given above, the following data were obtained:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = IV
Recall:
V = IR
Divide both side by R
I = V/R
P = V/R × V
P = V² / R
Where:
P => Electrical power
V => Voltage
I => Current
R => Resistance
With the above formula (i.e P = V²/R), we can calculate resistance as illustrated below:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = V²/R
150 = 24² / R
150 = 576 / R
Cross multiply
150 × R = 576
Divide both side by 150
R = 576 / 150
R = 3.84 Ω
Thus, the resistance is 3.84 Ω
Answer:
1.40 atm is the pressure for the gas
Explanation:
An easy problem to solve with the Ideal Gases Law:
P . V = n . R .T
T° = 370K
V = 17.3L
n = 0.8 mol
Let's replace data → P . 17.3L = 0.8mol . 0.082L.atm/mol.K . 370K
P = (0.8mol . 0.082L.atm/mol.K . 370K) / 17.3L = 1.40 atm
Answer:
a)22.2°C after adding magnesium
b)17.3°C before adding magnesium
c) 4.9 is change
Ice is less dense than water. Hydrogen bonding makes water more dense than when it is in the form of ice!
[email protected]@dow
Answer:
What do you need please to understand?