Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
Answer:
The mass of the ice block is equal to 70.15 kg
Explanation:
The data for this exercise are as follows:
F=90 N
insignificant friction force
x=13 m
t=4.5 s
m=?
applying the equation of rectilinear motion we have:
x = xo + vot + at^2/2
where xo = initial distance =0
vo=initial velocity = 0
a is the acceleration
therefore the equation is:
x = at^2/2
Clearing a:
a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2
we use Newton's second law to calculate the mass of the ice block:
F=ma
m=F/a = 90/1.283=70.15 kg
At a particular location, when an an increase in the rate at which water moves from the hydrosphere to the atmosphere, an increase in humidity is expected at that location. The term "humidity" generally refers to the amount of water vapor in the atmosphere.
True clicking the office button and then clicking new would display the new document.
Answer:
Explanation:
we know that
s=vt here v is the speed and s is distance covered by the signals
given data
v=3*10^8
t=10 min we have to convert it into seconds
1 minute=60 seconds
so
10 minutes =10*60/1 =600 seconds
now putting the value of v and t we can find the value of s
s=vt
s=3*10^8*600
s=1.8*10^11m
i hope this will help you