Answer:
If there was no air resistance
Explanation:
We know that free fall is a unique motion in which gravity only works on one object. Objects that are said to be free-falling do not experience a significant force of air resistance; They come under the sole effect of gravity. Under such conditions, all objects fall under the same acceleration, regardless of their mass.
If you put a penny in each light spot the penny that the light is shining on will recive the most energy.
This question is incomplete because the options are missing; here is the complete question:
A runner starts at point A, runs around a 1-mile track, and finishes the run back at point A. Which of the following statements is true?
A. The runner's displacement is 1 mile.
B. The runner's displacement is zero.
C. The distance the runner covered is zero.
D. The runner's speed was zero.
The answer to this question is B. The runner's displacement is zero
Explanation:
Displacement always implies a change of position; this means an object or individual moves from point A to point B, and therefore the original position is different from the final position. Additionally, in displacement, other related factors such as the total distance the body moved and the direction of movement. In the case presented, it can be concluded there was no displacement or the displacement is zero because even when the runner moved and ran two miles, he returned to the initial position, and without a change in the position, there is no displacement.
Atoms is basic particles ,electrons,neutrons and the Regions of the atom are called electron shells and contain the electrons. So “a neutral core surrounded by mostly empty space”sounds pretty sure to me :)
Explanation:
first you have to find accelerarion, it is given that the initial velocity(u) is 3 m/s, distance travelled(s) be 2m finall it came to rest so final velocity be 0m/s
now using the 3rd law of motion
v^2=u^2+2as
0=9+2a2
a= -9/4m/s^2
now force=mass×accelration
=2kg×(-9/4)m/s^2
=4.5 N
4.5 newton force applied on the book!
✌️:)