Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute 

Divide both side by
, then multiply by 6 we have



So the final speed of the second car is 4/3 of the first car original speed
A car of mass 1535 kg collides head-on with a parked truck of mass 2000 kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what was the initial speed of the car <u>20kmh</u>
<h3>What is
collision ?</h3>
A collision in physics is any situation in which two or more bodies quickly exert forces on one another. Despite the fact that the most common usage of the word "collision" refers to situations in which two or more objects clash violently, the scientific usage of the word makes no such assumptions.
The following are a few instances of physical encounters that scientists might classify as collisions:
- Legs of an insect are said to collide with a leaf when it falls on one.
- Every contact of a cat's paws with the ground while it strides across a lawn is seen as a collision, as is every brush of its fur with a blade of grass.
To learn more about collision from the given link:
brainly.com/question/27736776
#SPJ4
Answer:
<em>The frequency of of the note = 131 Hz.</em>
Explanation:
<em>Frequency:</em><em> Frequency can be defined as the number of complete oscillation completed by a wave in one seconds. The S.I unit of frequency is Hertz ( Hz)</em>
v = λf ............................ Equation 1
Making f the subject of the equation,
f = v/λ .......................... Equation 2
Where v = Speed, λ = wavelength, f = frequency
<em>Given: v = 343 m/s, λ = 2.62 m.</em>
<em>Substituting these values into equation 2</em>
<em>f = 343/2.62</em>
<em>f = 131 Hz</em>
<em>Thus the frequency of of the note = 131 Hz.</em>
Answer:
i have no idea what this is
Explanation: