The impulse given to the ball is equal to the change in its momentum:
J = ∆p = (0.50 kg) (5.6 m/s - 0) = 2.8 kg•m/s
This is also equal to the product of the average force and the time interval ∆t :
J = F(ave) ∆t
so that if F(ave) = 200 N, then
∆t = J / F(ave) = (2.8 kg•m/s) / (200 N) = 0.014 s
Answer:
1.635×10^-3m
Explanation:
Young modulus is the ratio of the tensile stress of a material to its tensile strain.
Young modulus = Tensile stress/tensile strain
Tensile stress = Force/Area
Given force = 130N
Area = Πr² = Π×(1.55×10^-3)²
Area = 4.87×10^-6m²
Tensile stress = 130/4.87×10^-6 = 8.39×10^7N/m²
Tensile strain = extension/original length
Tensile strain = e/3.9
Substituting in the young modulus formula given young modulus to be 2×10¹¹N/m²
2×10¹¹N/m² = 8.39×10^7/{e/3.9)}
2×10¹¹ = (8.39×10^7×3.9)/e
2×10¹¹e = 3.27×10^8
e = 3.27×10^8/2×10¹¹
e = 1.635×10^-3m
The stretch of the steel wire will be
1.635×10^-3m
Answer: Before the jump, the snowboarder would carry potential energy.
During the jump he will carry kinetic energy.
And after the jump, assuming hes at a full stop, he will carry potential energy once again.
Answer:
The idea that hard work is the most important aspect of new inventions existed before Edison gave his quote, however.
The idea behind this quote is that it is easy to have a good idea, or a creative insight. However, to follow through with that idea, and turn it into a reality, takes a level of patience and dedication that few people have.
Explanation: