Answer:
1,300,000,000,000
Explanation:
1.3 x 10^12
We want to convert this from scientific notation.
Tip: in scientific notation the exponent tells you how many place you move the decimal point over. If the exponent is negative you move the decimal point to the left. Ex. For, 4.1 x 10^-8, we would move the decimal point over 8 times to the left to get .00000041. When the exponent is positive we move over to the right. Ex. For, 7.6 x 10^7 we would move the decimal point over 7 times to the right to get 76,000,000
So to convert 1.3 x 10^12 we simply move over the decimal point over 12 times to the right.
1.3 x 10^12 ------> 1,300,000,000,000
Our answer is 1,300,000,000,000
If an organism reproduces quickly, its population can evolve faster.
<u>Answer:</u> The standard heat for the given reaction is -138.82 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(3\times \Delta H_f_{(CH_4(g))})+(1\times \Delta H_f_{(CO_2(g))})+(4\times \Delta H_f_{(NH_3(g))})]-[(4\times \Delta H_f_{(CH_3NH_2(g))})+(2\times \Delta H_f_{(H_2O(l))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28CH_3NH_2%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(3\times (-74.8))+(1\times (-393.5))+(4\times (-46.1))]-[(4\times (-22.97))+(2\times (-285.8))]\\\\\Delta H_{rxn}=-138.82kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%28-74.8%29%29%2B%281%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-46.1%29%29%5D-%5B%284%5Ctimes%20%28-22.97%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-138.82kJ)
Hence, the standard heat for the given reaction is -138.82 kJ