Answer:
The initial velocity is 50 m/s.
(C) is correct option.
Explanation:
Given that,
Time = 10 sec
For first half,
We need to calculate the height
Using equation of motion

....(I)
For second half,
We need to calculate the time
Using equation of motion



Put the value of h from equation (I)


According to question,


Put the value of t₁ and t₂



Here, g = 10
The initial velocity is


Hence, The initial velocity is 50 m/s.
Answer:
I'm not really sure but I think it's choice a
Answer:
R₁ = 50.77 Ω
Explanation:
Since, we know that:
Electric Power = P = VI
but from Ohm's Law:
V = IR
(or) I = V/R
Therefore,
P = V²/R
(OR) R = V²/P
where,
V = Battery Voltage
R = Resistance of combination
FOR SERIES COMBINATION:
R = Rs = (57 V)²/48 W
Rs = 67.69 Ω
but, we know that:
Rs = R₁ + R₂
R₁ + R₂ = 67.69 Ω
R₁ = 67.69 Ω - R₂ __________ eqn (1)
FOR PARALLEL COMBINATION:
R = Rp = (57 V)²/256 W
Rp = 12.69 Ω
but, we know that:
Rp = (R₁R₂)/(R₁ + R₂) = 12.69 Ω
using eqn (1) and value of R₁ + R₂, we get
Rp = 12.69 = R₂(67.69 - R₂)/67.69
859.08 = 67.69 R₂ - R₂²
R₂² - 67.69 R₂ + 859.08 = 0
Solving this quadratic equation we get the answers:
Either, R₂ = 50.76 Ω
Either, R₂ = 16.92 Ω
Since, it is stated in the question that R₁ > R₂. Therefore, we choose the second value. So,
<u>R₂ = 16.92 Ω</u>
using this value in eqn (1), we get:
R₁ = 67.69 Ω - 16.92 Ω
<u>R₁ = 50.77 Ω</u>
Answer:
Sorry I don't know the answer .Hope other help you.sorryyyyyyyy
Answer:
a. 0.18Hz
b. 0.56m/s
Explanation:
From the question we can deduct the following parameters
The wavelength, λ is define as the distance between two successful crest or trough and from the question we conclude that wavelength is 3.17m.
Also the period of the wave T can be computed as
T=22.6/4
T=5.65secs.
a. To compute the frequency, recall that frequency, F=1/period.
Hence,
F=1/5.65
F=0.18Hz
b. Next we compute the wave speed.
Wave speed=frequency *wavelength
Wave speed =0.18*3.17
Wave speed =0.56m/s