Answer:
C) 0.800 mol
Explanation:
In order to <u>convert from moles of Al₂O₃ into moles of Al</u>, we'll need to use<em> the stoichiometric coefficients</em>, using a conversion factor that has Al₂O₃ moles in the denominator and Al moles in the numerator:
- 0.400 mol Al₂O₃ *
= 0.800 mol Al
So the correct answer is option C).
Hey there!
Cu(CN)₂
Find the molar mass.
Cu: 1 x 63.546 = 63.546
C: 2 x 12.01 = 24.02
N: 2 x 14.07 = 28.14
-----------------------------------
115.706 grams
The mass of one mole of Cu(CN)₂ is 115.706 grams.
We have 4 moles.
115.706 x 4 = 463
4.00 moles of Cu(CN)₂ has a mass of 463 grams.
Hope this helps!
To know the acidity of a
solution, we calculate the pH value. The formula for pH is given as:
<span>pH = - log [H+] where H+ must be in Molar</span>
We are given that H+ = 3.25 × 10-2 M
Therefore the pH is:
pH = - log [3.25 × 10-2]
pH = 1.488
Since pH is way below 7, therefore the solution
is acidic.
To find for the OH- concentration, we must
remember that the product of H+ and OH- is equivalent to 10^-14. Therefore,
[H+]*[OH-] = 10^-14 <span>
</span>[OH-] = 10^-14 / [H+]
[OH-] = 10^-14 / 3.25 × 10-2
[OH-] = 3.08 × 10-13 M
Answers:
Acidic
[OH-] = 3.08 <span>× 10-13 M</span>
Answer:
1.67mol/L
Explanation:
Data obtained from the question include:
Mole of solute (K2CO3) = 5.51 moles
Volume of solution = 3.30 L
Molarity =?
Molarity is simply the mole of solute per unit litre of the solution. It can be expressed mathematically as:
Molarity = mole of solute /Volume of solution
Molarity = 5.51 mol/3.30 L
Molarity = 1.67mol/L
Therefore, the molarity of K2CO3 is 1.67mol/L