Answer is c, they are equal:
Explanation:
Answer:
a) Em₀ = 42.96 104 J
, b) = -2.49 105 J
, c) vf = 3.75 m / s
Explanation:
The mechanical energy of a body is the sum of its kinetic energy plus the potential energies it has
Em = K + U
a) Let's look for the initial mechanical energy
Em₀ = K + U
Em₀ = ½ m v2 + mg and
Em₀ = ½ 50.0 (1.20 102) 2 + 50 9.8 142
Em₀ = 36 104 + 6.96 104
Em₀ = 42.96 104 J
b) The work of the friction force is equal to the change in the mechanical energy of the body
= Em₂ -Em₀
Em₂ = K + U
Em₂ = ½ m v₂² + m g y₂
Em₂ = ½ 50 85 2 + 50 9.8 427
Em₂ = 180.625 + 2.09 105
Em₂ = 1,806 105 J
= Em₂ -Em₀
= 1,806 105 - 4,296 105
= -2.49 105 J
The negative sign indicates that the work that force and displacement have opposite directions
c) In this case the work of the friction going up is already calculated in part b and the work of the friction going down would be 1.5 that job
We have that the work of friction is equal to the change of mechanical energy
= ΔEm
= Emf - Emo
-1.5 2.49 10⁵ = ½ m vf² - 42.96 10⁴
½ m vf² = -1.5 2.49 10⁵ + 4.296 10⁵
½ 50.0 vf² = 0.561
vf = √ 0.561 25
vf = 3.75 m / s
Answer: 846°C
Explanation:
The quantity of Heat Energy (Q) required to heat bismuth depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = 423 joules
Mass of bismuth = 4.06g
C = 0.123 J/(g°C)
Φ = ?
Then, Q = MCΦ
423 J = 4.06g x 0.123 J/(g°C) x Φ
423 J = 0.5J/°C x Φ
Φ = (423J/ 0.5g°C)
Φ = 846°C
Thus, the change in temperature of the sample is 846°C
<span>The correct answer is "velocity, height". Kinetic energy is affected by: mass and velocity, while potential energy by: mass, gravity and height (or "position"). Considering these combinations, only the third choice is the correct one: a) position, gravity describe only potential energy, B) gravity, position describe only potential energy, C) velocity, height describe respectively kinetic and potential energy, D) height, velocity would respectively describe potential energy first and then kinetic energy, it is in the wrong order, thus the correct answer is C.</span>
Answer:
The work done on the sled by friction, W = - 4593.75 J
Explanation:
Given data,
The combined mass of sled and the boy, m = 75 kg
The displacement of the boy, S = 25 m
The coefficient of the friction, u = 0.25
The frictional force acting on the boy,
<em>F = u η</em>
Where,
η - is the normal force acting on the boy (mg)
Substituting the values,
F = 0.25 x 75 x 9.8
= 183.75 N
Since the direction of the frictional force is against the direction of motion
F = - 183.75 N
The work done on the sled by friction,
W = F x S
= - 183.75 x 25
= - 4593.75 J
Hence, the work done on the sled by friction, W = - 4593.75 J