In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

The wavelength of the 2nd harmonic is:

The wavelength of the 4th harmonic is:

It is not possible to find any integer n such that
, therefore the correct options are A, B and D.
Answer:
Explanation:add them then divide them by 100 I think
Answer:
D
Explanation:
First we define our variables
V0=29.4
a=-9.8
V=0
We have to find the maximum displacement , which I will define as X
We use formula v^2=v0^2+2aX
All we do is substitute our values
0=29.4^2-19.6X
29.4^2=19.6X
X=29.4^2/19.6=44.1
Answer:
Both these motions are caused by the Gravitational force of earth.
Explanation:
Both these motions are caused by the Gravitational force of earth.
According to the right-hand thumb rule, the forefinger gives the velocity of charge, the thumb gives the magnetic force and the center finger gives the direction of magnetic field.
then, as shown in the picture, the <span>direction of the magnetic force on the charge is in the right direction.</span>