1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
3 years ago
14

Part A Engineering stress and strain are calculated using the actual cross-sectional area and length of the specimen. True or fa

lse?
Engineering
2 answers:
sattari [20]3 years ago
6 0

Answer:

False

Explanation:

Engineering stress and strain are calculated utilizing  the original gauge lengths and original area.

Galina-37 [17]3 years ago
5 0

Answer: True

Explanation:

Engineering stress is the applied load divided by the original cross-sectional area of a material. It is also known as nominal stress. It can also be defined as the force per unit area of a material. Engineering Stress is usually in large numbers.

While Engineering strain is the amount that a material deforms per unit length in a tensile test.  It can also be defined as extension per unit length. It has no unit as it is a ratio of lengths. Engineering Strain is in small numbers.

You might be interested in
Select the correct answer. Which existing technology did engineers use to enhance the speed of propeller-driven airplanes
Musya8 [376]

metallurgy:

Explanation:

7 0
2 years ago
For a LED diode that has a= 632 nm, then the A1 is equal to:​
alexgriva [62]

Answer:

1.693242

Explanation:

The colors in the Light emitting diodes have been identified by wavelength which is measured in nano-meters. Wavelength is a function of LED chip material. The LED diode which has a = 632 then A1 will be 1.63242, this is calculated by 1 / 632. Wavelength are important for human eye sensitivity. The colors emitted from the LED will depend on the semiconductor material.

5 0
3 years ago
A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu
Contact [7]

Answer:

T = 167 ° C

Explanation:

To solve the question we have the following known variables

Type of surface = plane wall ,

Thermal conductivity k = 25.0 W/m·K,  

Thickness L = 0.1 m,

Heat generation rate q' = 0.300 MW/m³,

Heat transfer coefficient hc = 400 W/m² ·K,

Ambient temperature T∞ = 32.0 °C

We are to determine the maximum temperature in the wall

Assumptions for the calculation are as follows

  • Negligible heat loss through the insulation
  • Steady state system
  • One dimensional conduction across the wall

Therefore by the one dimensional conduction equation we have

k\frac{d^{2}T }{dx^{2} } +q'_{G} = \rho c\frac{dT}{dt}

During steady state

\frac{dT}{dt} = 0 which gives k\frac{d^{2}T }{dx^{2} } +q'_{G} = 0

From which we have \frac{d^{2}T }{dx^{2} }  = -\frac{q'_{G}}{k}

Considering the boundary condition at x =0 where there is no heat loss

 \frac{dT}{dt} = 0 also at the other end of the plane wall we have

-k\frac{dT }{dx } = hc (T - T∞) at point x = L

Integrating the equation we have

\frac{dT }{dx }  = \frac{q'_{G}}{k} x+ C_{1} from which C₁ is evaluated from the first boundary condition thus

0 = \frac{q'_{G}}{k} (0)+ C_{1}  from which C₁ = 0

From the second integration we have

T  = -\frac{q'_{G}}{2k} x^{2} + C_{2}

From which we can solve for C₂ by substituting the T and the first derivative into the second boundary condition s follows

-k\frac{q'_{G}L}{k} = h_{c}( -\frac{q'_{G}L^{2} }{k}  + C_{2}-T∞) → C₂ = q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞

T(x) = \frac{q'_{G}}{2k} x^{2} + q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞ and T(x) = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} )-x^{2} )

∴ Tmax → when x = 0 = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} ))

Substituting the values we get

T = 167 ° C

4 0
3 years ago
An insulated piston-cylinder device initially contains 0.16 m2 of CO2 at 150 kPa and 41 °C. Electric resistance heater supplied
lyudmila [28]

Answer:

I=0.3636

Explanation:

See the attached picture for explanation.

4 0
3 years ago
Carl why is there a dead man in the living room?
scoray [572]
You always need some company
3 0
3 years ago
Other questions:
  • 5. Assume that you and your best friend ench have $1000 to invest. You invest your money
    8·1 answer
  • When passing another vehicle, when is it acceptable to drive over the
    15·2 answers
  • The development of various technologies led to many historic events. Use information from the Internet to describe one major his
    5·1 answer
  • Steam enters an adiabatic turbine at 400◦C, 2 MPa pressure. The turbine has an isentropic efficiency of 0.9. The exit pressure i
    11·1 answer
  • A beam spans 40 feet and carries a uniformly distributed dead load equal to 2.2 klf (not including beam self-weight) and a live
    15·1 answer
  • Strands of materials A and B are placed under a tensile force of 10 Newtons. Material A deforms more than Material B.
    5·2 answers
  • If noise levels are high enough that you have to raise
    7·1 answer
  • Why did fprtmiu78t7ty87uhyu
    12·1 answer
  • Air at 403 K and 1 atm enters a convergent nozzle at a velocity of 150
    9·1 answer
  • This acronym is a reminder of the most common types of hazards or injuries caused by electricity.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!