The law of conservation of energy has not been broken, provided energy is released from the fission process.
<h3>What is the law of conservation of energy?</h3>
The law states that the total energy of a process is conserved. That is, the total energy or mass of a system before and after undergoing processing remains the same. However, some of the mass/energy can be converted to another form.
When a material undergoes fission, the sum total of the mass of the particles formed should be equal to the mass of the starting materials, provided that all other things remain the same.
However, if energy is released from the fission process, it means that some of the mass of the starting materials has been converted to energy and released to the environment.
More on the law of conservation of energy can be found here: brainly.com/question/20971995
#SPJ1
Answer:
7.7 normility and pH
Explanation:
Trust me im an 13 LEVEL COLLEGE TOUR
The metals will lose electrons while the non metals will gain electrons in order to attain octet structure.
An ion can be cation (positively charged) or anion (negatively charged).
Cations attain octet structure (8) by losing electron(s) while anions become stable or attains octet structure (8) by gaining electron(s).
The remaining elements are completed as follows to attain octet structure;
<u>Element</u>--<u>valence electron</u>--<u>electrons to gain</u>--<u>electrons to lose</u>--<u>ion formed</u>
O ------------ 6 ---------------------- 2 ------------------------ none -------------- 
Ca -------- 2 ----------------------- none ---------------------- 2 ------------------ 
Br ----------- 7 --------------------- 1 ------------------------ none --------------- 
S ------------ 6 ----------------------- 2 ------------------------ none --------------- 
Cl ------------ 7 ----------------------- 1 ------------------------ none ----------------
K -------------- 1 ----------------------- none ----------------------- 1 ------------------ 
Mg ------------ 2 ---------------------- none ---------------------- 2 ---------------- 
Be ------------- 2 ---------------------- none ---------------------- 2 ---------------- 
Learn more here: brainly.com/question/21089350
So,
Formate has a resonating double bond.
In molecular orbital theory, the resonating electrons are actually delocalized and are shared between the two oxygens. So the carbon-oxygen bonds can be described as 1.5-bonds (option B). I'm not sure if option C is correct, however, because the likelihood of both delocalized electrons being in the area of one oxygen atom is less than 50%.<span />
1- change of state (boiling)
2-increase in acidity
3-methylxanthines (caffeine) theobromine and theophylline
4- lemon juice