Answer:
0.83 mL
Explanation:
Given data
- Initial concentration (C₁): 12 M
- Final concentration (C₂): 1.0 M
- Final volume (V₂): 10.0 mL
We can calculate the initial volume of HCl using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 1.0 M × 10.0 mL / 12 M
V₁ = 0.83 mL
The required volume of the initial solution is 0.83 mL.
Answer:
1.7 bar
Explanation:
We can use the <em>Ideal Gas Law</em> to calculate the individual gas pressure.
pV = nRT Divide both sides by V
p = (nRT)/V
Data: n = 1.7 × 10⁶ mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 22 °C
V = 2.5 × 10⁷ L
Calculations:
(a) <em>Change the temperature to kelvins
</em>
T = (22 + 273.15) K
= 295.15 K
(b) Calculate the pressure
p = (1.7 × 10⁶ × 0.083 14 × 295.15)/(2.5× 10⁷)
= 1.7 bar
Answer:
Hi how are you doing today Jasmine
Answer: b suspension
a suspension is a heterogeneous mixture that contains solid particles sufficiently large for sedimentation . The particles may be
visible to the naked eye, usually must be larger than one micrometer , and will eventually settle, although the mixture is only classified as a suspension when and while the particles have not settled out. A suspension is a heterogeneous mixture in which the solute particles do not dissolve , but get suspended throughout the bulk of the solvent , left floating around freely in the medium. [1] The internal phase (solid) is dispersed throughout the external phase (fluid) through mechanical agitation , with the use of certain excipients or suspending agents.
An example of a suspension would be sand in water. The suspended particles are visible under a
microscope and will settle over time if left undisturbed. This distinguishes a suspension from a colloid , in which the suspended particles are smaller and do not settle.
Colloids and suspensions are different from
solution , in which the dissolved substance (solute) does not exist as a solid, and solvent and solute are homogeneously mixed.