B 20 m/s
It should go to 100 that fast nor 40
Can you add more information to this question?
Answer:
well, it is not a solid path and thats a teeny tiny fact
<u>In modern physics</u>, as it was called "Stefan-Boltzmann law", the total energy radiated per unit surface area of a black body is directly proportional to the fourth power of the black body's temperature T
as:

where: P is the power (total energy radiated per second per square meter) and T is the temperature of a black body.
then we can make a ratio between the state of before quadruple (with subscript 1) and after (with subscript 2) as:

As

Then

then

- The factor will the total energy radiated per second per square meter increase = 256
Answer:
Explanation:
Given,
- Work done by the rope 900 m/s.
- Angle of inclination of the slope =

- Initial speed of the skier = v = 1.0 m/s
- Length of the inclined surface = d = 8.0 m
part (a)
The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity

In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.
part (b)
- Initial speed of the skier = v = 1.0 m/s.
Rate of the work done by the rope is power of the rope.

Part (c)
- Initial speed of the skier = v = 2.0 m/s.
Rate of the work done by the rope is power of the rope.
