Answer:
they differ each other bc it is a lot of with earth quakes and everything.
Explanation:
Answer:
The block will not move.
Explanation:
We'll begin by calculating the frictional force. This can be obtained as follow:
Coefficient of friction (µ) = 0.6
Mass of block (m) = 3 Kg
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (R) = mg = 3 × 10 = 30 N
Frictional force (Fբ) =?
Fբ = µR
Fբ = 0.6 × 30
Fբ = 18 N
From the calculations made above, the frictional force of the block is 18 N. Since the frictional force (i.e 18 N) is bigger than the force applied (i.e 14 N), the block will not move.
Answer:

Explanation:
Given data
length=100mm
Diameter=5mm
Thermal conductivity=5 W/m.K
Power=50 W
Temperature=25°C
The temperature of heater surface follows from the rate equation written as:

Where S can be estimated from the conduction shape factor for a vertical cylinder in semi infinite medium

Substitute the given values
![S=\frac{2\pi (0.1m)}{ln[\frac{4*0.1m}{0.005m} ]}\\ S=0.143m](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B2%5Cpi%20%280.1m%29%7D%7Bln%5B%5Cfrac%7B4%2A0.1m%7D%7B0.005m%7D%20%5D%7D%5C%5C%20S%3D0.143m)
The temperature of heater is then:

The temperature reached by the heater when dissipating 50 W with the surface of the block at a temperature of 25°C.

Answer:
16 km
Explanation:
Drawing a right triangle to model the problem helps. I started by drawing the lines of the triangle to model the hiker's journey- a vertical straight line for 11 km north and then a horizontal line connected to the top of it for 11 km east; I then drew the hypothenuse to connect the two lines.
The hypothenuse is what we have to solve for, so we will use the Pythagorean Theorem, a^2 + b^2 = c^2. Since both distances are 11 km both a and b in the equation are 11.
11^2 + 11^2 = c^2
121 + 121 = c^2
242 = c^2
c = 15.56
Rounding the answer makes it 16 km for the hiker's magnitude of displacement.
Answer:
2.345 would be the most precious because you have more numbers to work with and exact numbers