Answer:
b. potassium.
Explanation:
Potassium-sparing diuretics and salt substitutes are diuretics that eliminate salt and water but save potassium. They act by inhibiting the conducting sodium channels in the collecting tubule, such as amiloride and triamterene, or by blocking aldosterone, such as spironolactone.
Concomitant use of potassium-sparing diuretics together with salt substitutes may result in dangerously high blood levels of serum potassium. For this reason, it is important to consult a physician before taking these substances at the same time to avoid potential problems with potassium accumulation.
Distance and period of time
Explanation:
Charles' law gives the relationship between the volume and the temperature of the gas. Mathematically,
Volume ∝ Temperature
i.e. 
We have, V₁ = 1.6 L, T₁ = 278 K, T₂ = 253, V₂=?

So, the new volume is 1.45 L.
There are several information's already given in the question. Based on those information's, the answer can be easily deduced.
Amount of gasoline required by Harry's car to travel 25 miles = 1 gallon
Then
amount of gasoline required
by Harry's car to travel 15000 miles = 15000/25
= 600 gallons
So
Amount of CO2 released by burning 1 gallon of gasoline = 20 pounds
Then
Amount of CO2 released
by burning 600 gallon of gasoline = 600 * 20
= 12000 pounds
From the above deduction, it can be concluded that the amount of CO2 that will be added by Harry's car to the atmosphere is 12000 pounds.
Answer: 14943.5 J
Explanation:
The quantity of heat energy (Q) required to raise the temperature of a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that,
Q = ?
Mass of water = 55.0g
C = 4.18 J/g°C
Φ = 65.0°C
Then, Q = MCΦ
Q = 55.0g x 4.18 J/g°C x 65.0°C
Q = 14943.5 J
Thus, 14943.5 joules of heat is needed to raise the temperature of water.