No force contributes to density, the density is a physical quantity that is defined as being

the raport between the mass of the object and its volume. However if you want to measure the density of an object you might want to determine its gravity force (weight)

from which knowing the gravitational acceleratin you can find its mass
where

is given in Newtons and

is given in
Mass is the amount of matter in an object whereas weight is the force of gravity acting on the mass of an object. Different planets exert a different force of gravity on an object-meaning that an object's weight will change depending on the force of gravity acting on it, but it's mad will remain unchanged.
It makes no sense how you typed this problem out.
Answer:
4.25 m/s
Explanation:
Force, F = 22 N
Time, t = 0.029 s
mass, m = 0.15 kg
initial velocity of the cue ball, u = 0
Let v be the final velocity of the cue ball.
Use newton's second law
Force = rate of change on momentum
F = m (v - u) / t
22 = 0.15 ( v - 0) / 0.029
v = 4.25 m/s
Thus, the velocity of cue ball after being struck is 4.25 m/s.
Answer:
A = 4.6 [m²]
Explanation:
The area of a circle can be calculated by means of the following equation.

where:
A = area [m²]
D = diameter = 2.42 [m]
Now replacing:
![A=\frac{\pi }{4} *(2.42)^{2} \\A = 4.6 [m^{2} ]](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%2A%282.42%29%5E%7B2%7D%20%5C%5CA%20%3D%204.6%20%5Bm%5E%7B2%7D%20%5D)