You sure wouldn't want something like cm/s or (yikes cm/hr). You want a reasonable number for sports usually between 0 and 100
Km / hour would be a good choice.
The next town to where I live is 25 km away. On a good day, I can make it there in about 3/4 of an hour.
Speed = 25 km / 0.75 hour = 33.3 km/hour. That's actually a little fast most of the time. But you should understand what I mean.
Answer:
The tomato won't hit the car
Explanation:
According to the statement, the car moves at constant speed behind the truck fully loaded with tomatoes, and in the same direction. When a tomato falls from the top of the truck, it should not hit the car as the tomato falls due to the force of gravity, while horizontally has the same speed and in the same direction as the truck. So we assume that the tomato will fall to the road without touching the car.
Have a nice day!
Answer:
W = 9.93 10² N
Explanation:
To solve this exercise we must use the concept of density
ρ = m / V
the tabulated density of copper is rho = 8966 kg / m³
let's find the volume of the cylindrical tube
V = A L
V = π (R_ext ² - R_int ²) L
let's calculate
V = π (4² - 2²) 10⁻⁴ 3
V = 1.13 10⁻² m³
m = ρ V
m = 8966 1.13 10⁻²
m = 1.01 10² kg
the weight of the tube
W = mg
W = 1.01 10² 9.8
W = 9.93 10² N
Answer:
L/2
Explanation:
Neglect any air or other resistant, for the ball can wrap its string around the bar, it must rotate a full circle around the bar. This means the ball should be able to swing to the top position where it's directly above the bar. By the law of energy conservation, this happens when the ball is at the same level as where it's previously released vertically. It means the swinging radius around the bar must be at least half of the string length.
So the distance d between the bar and the pivot should be at least L/2
Answer:
The Total Mechanical Energy
As already mentioned, the mechanical energy of an object can be the result of its motion (i.e., kinetic energy) and/or the result of its stored energy of position (i.e., potential energy). The total amount of mechanical energy is merely the sum of the potential energy and the kinetic energy.
Explanation: