A particle has centripetal acceleration whenever it's a making a turn of radius R. If the particle is moving at a constant tangential speed v throughout the turn, then the magnitude of centripetal acceleration is
v²/R
If the particle is following a uniformly circular path, then it moves in a circle of radius R and travels a distance equal to its circumference, 2πR. Let T be the time it takes to complete one such loop. Then the entire circle is traversed with speed v = 2πR/T, so that the centripetal acceleration is also given by
v²/R = (2πR/T)²/R = 4π²R/T²
Answer:
Torque, 
Explanation:
Given that,
Coordinates, 
Force acting on the flea, 
Let
is the net torque about the origin on a flea. It is given by the following formula :




So, the net torque about the origin on a flea is
. Hence, this is the required solution.
Answer:
C) 20 m/s
Explanation:
Wave: A wave is a disturbance that travels through a medium and transfers energy from one point to another, without causing any permanent displacement of the medium itself. Examples of wave are, water wave, sound wave, light rays, radio waves. etc.
The velocity of a moving wave is
v = λf ............................ Equation 1
Where v = speed of the wave, λ = wave length, f = frequency of the wave.
Given: f = 2 Hz (two complete cycles in one seconds), λ = 10 meters
Substituting these values into equation 1
v = 2×10
v = 20 m/s.
Thus the speed of the wave = 20 m/s
The right option is C) 20 m/s
Answer:

Explanation:
The torque is the force by the distance so to determinate that both torque are the same magnitude so




Solve to d2


At a constant force, the mass of the balloon is inversely proportional to the rate of change motion of the balloon.
The force applied to an object can be determined by applying Newton's second law of motion, the force applied to an object is directly proportional to the product of mass and acceleration of the object.
F = ma
where;
- <em>m is the mass of the balloon</em>
- <em>a is the change in velocity per time</em>

The mass of an object is inversely proportional to the rate of change motion of the object.
Thus, we can conclude that at constant force, the mass of the balloon is inversely proportional to the rate of change motion of the balloon.
Learn more here:brainly.com/question/15321240