water management, carbon dioxide, sunlight, or water
Answer:
1768 N
Explanation:
We can solve the problem by using Newton's second law:

where
F is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have a car of mass
m = 884 kg
And its acceleration is

Substituting into the equation, we find the net force on the car:

The period of a simple pendulum is given by

where
L is the pendulum length
g is the acceleration of gravity
If we move the same pendulum from Earth to the Moon, its length L remains the same, while the acceleration of gravity g changes. So we can write the period of the pendulum on Earth as:

where

is the acceleration of gravity on Earth, while the period of the pendulum on the Moon is

where

is the acceleration of gravity on the Moon.
If we do the ratio of the two periods, we get

but the gravity acceleration on the Moon is 1/6 of the gravity acceleration on Earth, so we can write

and we can rewrite the previous ratio as

so the period of the pendulum on the Moon is
Answer:
The correct option is that (She decreases her moment of inertia, thereby increasing her angular speed.)
Explanation:
When an object is in circular motion, the vector that describes it is known as angular momentum. Angular momentum is conserved or constant when an object is spinning in a closed system and no external torques are applied to it. An example of conservation of angular momentum is seen when a woman is sitting on a spinning piano stool with her arms extended. Her angular momentum is conserved because the net torque on her is negligibly small as the friction is exerted very close to the pivot point.
When she folds her arms,her rate of spin increases greatly decreasing her moment of inertia. The work she does to pull in her arms results in an increase in rotational kinetic energy( that is, increase in her angular speed). I hope this helps, thanks!
I know you are Indian by your question, HC Verma class 9 or 11 !!
if you got any problem, comment !!