Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M
At higher temperature, and lower pressure.
Answer:
2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)
Explanation:
In a net ionic equation you list <em>only the ions that are participating in the reaction. </em>
When potassium phosphate, K₃PO₄, reacts with iron (II) nitrate, Fe(NO₃)₂ producing iron (II) phosphate, Fe₃(PO₄)₂ that is an insoluble salt. The reaction is:
2K₃PO₄ + 3 Fe(NO₃)₂ → Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
The ionic equation is:
6K⁺ + 2PO₄³⁻ + 3Fe²⁺ + 6NO₃⁻→ Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
Subtracting the K⁺ and NO₃⁻ ions that are not participating in the reaction, the net ionic equation is:
<h3>2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)</h3>