Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
Answer: Explanation: Speed is simply velocity without a specified direction (speed is the magnitude of the velocity vector). Regardless of the two measurements, they both relate distance to time, but are slightly different. Instantaneous speed is the derivative of the total distance covered with respect to time.
Explanation: I hope this helps!
B
A qualitative observation describes the characteristics of a substance without quantifying them.
Answer:
nine
There are nine orbitals in the n = 3 shell. There is one orbital in the 3s subshell and three orbitals in the 3p subshell. The n = 3 shell, however, also includes 3d orbitals. The five different orientations of orbitals in the 3d subshell are shown in the figure below.
Explanation:
The correct answer is B. The concentration of a solution does not decreases when you add more solute to the solvent. Instead, the concentration increases. Concentration is expressed as the amount of solute per unit of solvent. Therefore, increasing the solute, increases this value and increasing the solvent, decreases this value.