Answer: The fusion of hydrogen to form helium
Explanation:
Answer:
The increasing order of conductivity is O< Ge< Mn.
Explanation:
Electrical conductivity is defined as the measure of the ability of a material to conduct electrical current through it. The conductivity depends on the atomic and molecular structure of the material.
Metals are good conductors because they have a structure with many electrons with weak bonds, and this allows their movement instead non-metals have between four and eight valence electrons, which lack this tendency.
The conductivity increases in the periodic table from top to bottom and from right to left.
oxygen is a nonmetal therefore it is a bad conductor.
Germanium is a metalloid whose conductivity is greater than a nonmetal and worst than a metal.
Manganese is a metal,in this case, it is a good conductor.
Explanation:
So the gas pressure of a helium balloon arises from the impact of the collisions of the helium atoms between themselves and with the inside surface of the balloon. Of course, the outside atmosphere similarly exerts a pressure on the outside of the balloon.
Answer:
Michaelis constant is known as km which is the substrate concentration that encourages the compound to work at half maximum velocity represented by Vmax/2. Michaelis constant is inversely related to the substrate and the affinity of the enzyme.
Induced fit model: The premise of the purported induced fit hypothesis, which expresses that the attachment or association of a substrate or some other atom to an enzyme causes an adjustment to the enzyme in order to fit or restrain its activity.
In substrate, analog Km or Michaelis constant will be high as the substrate will stay because of analogs inhibit activity.
In the transitional state, analog Km will be in the middle of the substrate and product analogs. Progress state analogs are synthetic mixes with a structure catalyzed reaction that looks like the progressing condition of a substrate atom in a compound enzyme.
In item simple thus Km is the least.
0.0013 M = product ananlog,
0.025 M=Transition state, and
0.0045 M = Substrate analog
The mass for of aluminum that is produced by the decomposition of 5.0 Kg Al2O3 is 2647 g or 2.647 Kg
calculation
Write the equation for decomposition of Al2O3
Al2O3 = 2Al + 3 O2
find the moles of Al2O3 = mass/molar mass
convert 5 Kg to g = 5 x1000 = 5000 grams
molar mass of Al2O3 = 27 x2 + 16 x3 = 102 g/mol
moles =5000 g/ 102 g/mol = 49.0196 moles
by use of mole ratio between Al2O3 to Al which is 1:2 the moles of Al = 49.0196 x2 =98.0392 moles
mass of Al = moles x molar mass
= 98.0392 moles x 27g/mol = 2647 grams or 2647/1000 = 2.647 Kg