Angle, θ2 at which the light leaves mirror 2 is 56°
<u>Explanation:</u>
Given-
θ1 = 64°
So, α will also be 64°
According to the figure:
α + β = 90°
So,
β = 90° - α
= 90° - 64°
= 26°
β + γ + 120° = 180°
γ = 180° - 120° - β
γ = 180° - 120° - 26°
γ = 34°
γ + δ = 90°
δ = 90° - γ
δ = 90° - 34°
δ = 56°
According to the law of reflection,
angle of incidence = angle of reflection
θ2 = δ = 56°
Therefore, angle θ2 at which the light leaves mirror 2 is 56°
Answer:
the ship's energy is greater than this and the crew member does not meet the requirement
Explanation:
In this exercise to calculate kinetic energy or final ship speed in the supply hangar let's use the relationship
W =∫ F dx = ΔK
Let's replace
∫ (α x³ + β) dx = ΔK
α x⁴ / 4 + β x = ΔK
Let's look for the maximum distance for which the variation of the energy percent is 10¹⁰ J
x (α x³ + β) =
- K₀
= K₀ + x (α x³ + β)
Assuming that the low limit is x = 0, measured from the cargo hangar
Let's calculate
= 2.7 10¹¹ + 7.5 10⁴ (6.1 10⁻⁹ (7.5 10⁴) 3 -4.1 10⁶)
Kf = 2.7 10¹¹ + 7.5 10⁴ (2.57 10⁶ - 4.1 10⁶)
Kf = 2.7 10¹¹ - 1.1475 10¹¹
Kf = 1.55 10¹¹ J
In the problem it indicates that the maximum energy must be 10¹⁰ J, so the ship's energy is greater than this and the crew member does not meet the requirement
We evaluate the kinetic energy if the System is well calibrated
W = x F₀ =
–K₀
= K₀ + x F₀
We calculate
= 2.7 10¹¹ -7.5 10⁴ 3.5 10⁶
= (2.7 -2.625) 10¹¹
= 7.5 10⁹ J
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.
The answer is B. This form of magnesium chloride is not a liquid but a solid that is white and colorless.
Answer:
The best glasses have a wider bowl than rim to allow for proper swirling. The swirl releases volatile aroma compounds and creates a vortex in the center of the glass towards which these compounds are drawn
Explanation:\\\