Answer:
a = -8.912 m/s²
Explanation:
Given,
The initial velocity of the car, u = 28 m/s
The final velocity of the car, v = 0
The distance traveled by car, d = 88 m
The velocity displacement relation is given by the formula
v = d/t
∴ t = d/v
Substituting in the above values in the given equation
t = 88/28
= 3.142 s
The acceleration is given by the formula
a = (v-u)/t
= (0 - 28)/3.142
= -8.912 m/s²
The negative sign is that the car is decelerating.
Hence, acceleration a = -8.912 m/s²
<span>We never really used the acronym "IMA", or ideal mechanical advantage, but I'm assuming you are trying to increase the leverage and ease the effort. If so, the answer is false. You want larger movement on the effort side, and smaller movement on the resistant side of the fulcrum.</span>
Answer:
Cold
Explanation:
Im pretty sure im sorry if I am wrong