In a circuit having 2 lamps are connected in parallel to a battery
then the two lamps will be having the same potential as the battery
i.e

As per Ohm's law,
and 
In other words, each lamp's current is inversely related to its individual resistance. We only know the current in one of the bulbs in this specific instance. We would therefore need further information in order to calculate the current in the other light. Therefore, there isn't enough data to make a statement.
Under the assumption that all physical parameters, including temperature, remain constant, Ohm's law asserts that "the voltage across a conductor is directly proportional to the current flowing through it".
Learn more about Ohm's law here
brainly.com/question/2264542
#SPJ4
Answer:
a) 
Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

b) 
And we can find the positions for the two times required like this:
And now we can replace and we got:

Explanation:
The particle position is given by:

Part a
In order to find the velocity we need to take the first derivate for the position function like this:

Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

Part b
For this case we can find the average velocity with the following formula:

And we can find the positions for the two times required like this:
And now we can replace and we got:

Answer:
The relative density of the second liquid is 7.
Explanation:
From archimede's principle we know that the force that a liquid exerts on a object equals to the weight of the liquid that the object displaces.
Let us assume that the volume of the object is 'V'
Thus for the liquid in which the block is completely submerged
The buoyant force should be equal to weight of liquid
Mathematically

Thus for the liquid in which the block is 1/7 submerged
The buoyant force should be equal to weight of liquid
Mathematically

Comparing equation 'i' and 'ii' we see that

Since the first liquid is water thus 
Thus the relative density of the second liquid is 7.
Technically, we have no way of knowing that without seeing Figure 16-2.
So the question should be reported for incomplete content. But I'm
going to take a wild stab at it anyway.
There's so much discussion of 'cylinder' and 'strokes' in the question,
I have a hunch that it's talking about the guts of a 4-stroke internal
combustion gasoline engine.
If I'm right, then the temperature of the material within the cylinder is
greatest right after the spark ignites it. At that instant, the material burns,
explodes, expands violently, and drives the piston down with its stiff shot
of pressure.
This is obviously happening because of the great, sudden increase in
temperature when the material ignites and explodes.
It hits the piston with pressure, which leads directly to the power stroke.