Answer:
The male gamete is smaller in comparison to that of the female gamete.
The male gamete is conical from the front while the female gamete is spherical.
The cytoplasm in the male gamete is less in comparison to that of the female gamete.
The male gamete can move with the help of the tail while the female gametes are immobile and do not have any tail or flagella present.
The number of mitochondria present in the sperm is less than the number of mitochondria present in the ovum.
The male gamete has acrosome present in the head region that contains enzymes for dissolving the membranes present around the ovum. The ovum does not contain such digestive enzymes.
Explanation:
Answer:
Microwaves, visible light, ultraviolet light, x-rays, γ-rays
Explanation:
The energy of any wave is given by :

h = Planck's constant
is the frequency of wave
It is clear that the energy of any wave is directly proportional to its frequency. Gamma rays have maximum frequency. Out of given options microwaves have least frequency.
So, the increasing order of energy is "microwaves, visible light, ultraviolet light, x-rays, γ-rays". Hence, the correct option is (5).
A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
Physics - Damon, Wednesday, December 9, 2015 at 5:13am
F = k x
k = 2 g/6.1 cm
2.5g = (2g/6.1cm) x
x = 6.1 (2.5/2) cm
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:
