Answer:
French physicist Jacques Charles (1746-1823) studied the effect of temperature on the volume of a gas at constant pressure. Charles's Law states that the volume of a given mass of gas varies directly with the absolute temperature of the gas when pressure is kept constant. The absolute temperature is temperature measured with the Kelvin scale. The Kelvin scale must be used because zero on the Kelvin scale corresponds to a complete stop of molecular motion.
alt
Figure 11.5.1: As a container of confined gas is heated, its molecules increase in kinetic energy and push the movable piston outward, resulting in an increase in volume.
Mathematically, the direct relationship of Charles's Law can be represented by the following equation:
V
T
=k
As with Boyle's Law, k is constant only for a given gas sample. The table below shows temperature and volume data for a set amount of gas at a constant pressure. The third column is the constant for this particular data set and is always equal to the volume divided by the Kelvin temperature.
Explanation:
PLEASS MARK ME AS BRAINLIEST ANSWER
Answer:
A
Explanation:
Increasing the the temperature would favour the endothermic reaction which is the forward direction however increasing the pressure would make the reaction try to counteract this change by favouring the reaction that would create more products so the equilibrium will shift left instead of right.
Hope this helps.
Co2
Explanation:
CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (l)
The molecular formula for hyponitrous acid is H2N2O2. and for nitroxyl is HNO.
The chemical compound HNO is also known as nitroxyl (common name) or Azanon (IUPAC name). In the gas phase, it is widely recognized. In the solution phase, the short-lived intermediate nitroxyl can develop. Nitric oxide (NO) is reduced to form the conjugate base, NO, which is isoelectronic with dioxygen.
By oxidizing hydroxylamine with CuO , HgO, and Ag 2 and by oxidizing hydroxylamine with N2O3 in methyl-alcoholic solution, we can create hyponitrous acid.
Learn more about chemical compound here -
brainly.com/question/12166462
#SPJ4