Cobalt-59 and Cobalt-60 differ in that they have different mass number which means they have different number of neutrons. Isotopes are atoms of the same element with similar atomic number but different mass number. Cobalt-60, has a number of uses, which includes, being used to irradiate food sources as a method of preserving food, used in industrial radiography to detect structural flaws in metal parts among other uses.
<h3><u>Answer</u>;</h3>
H2O -Bronsted Acid
<h3><u>Explanation;</u></h3>
- Bronsted-Lowry acids are H+ donors
, while Bronsted-Lowry bases are H+ acceptors
.
- A reaction of a Bronsted-Lowry acid and a Bronsted base is a neutralization reaction that is characterized by H+ transfer.
- The above reaction is an example of base ionization or dissociation where;
B (aq) + H2O (l) → BH+ (aq) + OH– (aq)
That is; Base + Acid will give a conjugate acid + hydroxide ion
- In our case; NO2- + H2O → HNO2 + OH- ; H2O is the H+ donor and thus, it is a Bronsted Acid.
I think it would be false hope this helps
The answer is B- Low reactivity.
Answer:
The valid quantum numbers are l=0, l=-2 and l= 2.
Explanation:
Given that,
n = 3 electron shell
Suppose, the valid quantum numbers are
l = 3
m = 3
l = 0
m = –2
l = –1
m = 2
We know that,
The value of n = 3
Principle quantum number :
Then the principal quantum number is 3. Which is shows the M shell.
So, n = 3
Azimuthal quantum number :
The azimuthal quantum number is l.
Magnetic quantum number :
The magnetic quantum number is
Hence, The valid quantum numbers are l=0, l=-2 and l= 2.