Question: The question is not complete. Find below the complete question and the answer.
Alab group was supposed to make 14 mL of a 36% acid solution by mixing a 20% solution, a 26% solution, and a 42% solution. However, the 20% solution was mislabeled, and was actually a 10% solution, so the lab group ended up with 14 mL of a 34% acid solution, instead. If the augmented matrix that represents the system of equations is given below, what are the volumes of the solutions that should have been mixed? mL
Volume of 20% solution= ?
Volume of 26% solution = ?
Volume of 42% solution= ? Round to the nearest whole number ml
Answer:
Volume of 20% solution= 3 mL
Volume of 26% solution = 1 mL
Volume of 42% solution= 10 mL
Explanation:
Find attached of the calculations.
Answer:
A breakdown of the breaking buffer was first listed with its respective component and their corresponding value; then a table was made for the stock concentrations in which the volume that is being added was determined by using the formula
. It was the addition of these volumes altogether that make up the 0.25 L (i.e 250 mL) with water
Explanation:
Given data includes:
Tris= 10mM
pH = 8.0
NaCl = 150 mM
Imidazole = 300 mM
In order to make 0.25 L solution buffer ; i.e (250 mL); we have the following component.
Stock Concentration Volume to be Final Concentration
added
1 M Tris 2.5 mL 10 mM
5 M NaCl 7.5 mL 150 mM
1 M Imidazole 75 mL 300 mM
. is the formula that is used to determine the corresponding volume that is added for each stock concentration
The stock concentration of Tris ( 1 M ) is as follows:
.

The stock concentration of NaCl (5 M ) is as follows:
.

The stock concentration of Imidazole (1 M ) is as follows:
.

Hence, it is the addition of all the volumes altogether that make up 0.25L (i.e 250 mL) with water.
I: Current
V: Voltage
R: resistance
you’re welcome ;)
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.