For the purpose we will use the following equation for potential energy:
U = m * g * h
In the above equation, m represents the mass of the object, h represents the height of the object and g represents the gravitational field strength (9.8 N/kg on Earth).
When we plug values into the equation, we get following:
U= 65.7kg * 9.8 N/kg *135m = 86921.1 J = 86.92 kJ
Awnser:
Elastic Potential Energy. Elastic potential energy is Potential energy stored as a result of deformation of an elastic object,
Explanation:
Answer:
0.073 N-m
Explanation:
i = 12 A, l = 0.8 m, B = 0.12 T
The circumference of the loop is 0.8 m.
Let r be the radius of the loop.
2 x 3.14 x r = 0.8
r = 0.127 m
Maximum Torque = i x A x B
Maximum Torque = 12 x 3.14 x 0.127 x 0.127 x 0.12 = 0.073 N-m
Out of the four the last one is true - "<span>radiation may stick around for a long time and cause cancer". The other three are false - some effects will be long-lasting, they may affect large areas, and are not necessarily apparent immediately.</span>
Answer:
U₁ = (ϵAV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
Explanation:
The energy stored in a capacitor is given by (1/2) (CV²)
Energy in the capacitor initially
U = CV²/2
V = voltage across the plates of the capacitor
C = capacitance of the capacitor
But the capacitance of a capacitor depends on the geometry of the capacitor is given by
C = ϵA/d
ϵ = Absolute permissivity of the dielectric material
A = Cross sectional Area of the capacitor
d = separation between the capacitor
So,
U = CV²/2
Substituting for C
U = ϵAV²/2d
Now, for U₁, the new distance between plates, d₁ = 3d
U₁ = ϵAV²/2d₁
U₁ = ϵAV²/(2(3d))
U₁ = (ϵAV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.