The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au
Answer:
Total Energy of the electrons
Explanation:
An atom in an excited state is when the total energy of electrons can be lowered by transferring molecule(s) over to different orbitals. in an excited state atom, not all electrons are at the lowest energy levels
Answer:
Explanation:
Given parameters:
Molarity of KOH = 0.26M
Volume of H₂SO₄ = 19.76mL
Molarity of H₂SO₄ = 0.20M
Unknown:
Volume of KOH = ?
Solution:
This is a neutralization reaction in which an acid reacts with a base to produce salt and water:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
We solve from the known to the unknown in the reaction.
The known is the acid and from there we can find the number of moles of the acid to be completely neutralized:
Number of moles of acid = molarity x volume
Number of moles of acid = 19.76 x 0.20 = 3.95mol
From the balanced reaction equation:
1 mole of acid reacts with 2 moles of the bases KOH
3.95mole of acid would react with 3.95moles x 2 of the base
Number of moles of reacting base = 7.90moles
To find the volume of base;
Volume of base = 
Volume =
= 30.40mL
Learn more:
Neutralization brainly.com/question/6447527
#learnwithBrainly
To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s