Answer:
Approximately
, assuming that
.
Explanation:
Let
and
denote the mass and acceleration of Spiderman, respectively.
There are two forces on Spiderman:
- Downward gravitational attraction from the earth:
. - Upward tension force from the strand of web
.
The directions of these two forces are exactly opposite of one another. Besides, because Spiderman is accelerating upwards, the magnitude of
(which points upwards) should be greater than that of
(which points downwards towards the ground.)
Subtract the smaller force from the larger one to find the net force on Spiderman:
.
On the other hand, apply Newton's Second Law of motion to find the value of the net force on Spiderman:
.
Combine these two equations to get:
.
Therefore:
.
By Newton's Third Law of motion, Spiderman would exert a force of the same size on the strand of web. Hence, the size of the force in the strand of the web should be approximately
(downwards.)
The answer is C. Final position minus initial position.
We have that the spring constant is mathematically given as

Generally, the equation for angular velocity is mathematically given by

Where
k=spring constant
And

Therefore

Hence giving spring constant k

Generally
Mass of earth 
Period for on complete resolution of Earth around the Sun


Therefore


In conclusion
The effective spring constant of this simple harmonic motion is

For more information on this visit
brainly.com/question/14159361