Answer: Your code returns a number of 99.123456789 +0.00455679
Ok, you must see where the error starts to affect your number.
In this case, is in the third decimal.
So you will write 99.123 +- 0.004 da da da.
But you must round your results. In the number you can see that after the 3 comes a 4, so the 3 stays as it is.
in the error, after the 4 comes a 5, so it rounds up.
So the final presentation will be 99.123 +- 0.005
you are discarding all the other decimals because the error "domains" them.
The mass of fuel the engine burn each second to produce a thrust of 7.66×10⁵ N is 2.5×10² kg/s.
<h3 /><h3>What is mass?</h3>
Mass can be defined as the quantity of matter contained in a body. The S.I unit of mass is kilogram(kg)
To calculate the mass the engine burns each seconds, we use the formula below.
Formual:
- M = T/v............. Equation
Where:
- M = Mass per seconds of the rocket
- T = Thrust
- v = Velocity
From the question,
Given:
- T = 7.66×10⁵ N
- v = 3.05×10³ m/s
Substitute these values into equation 1
- M = (7.66×10⁵)/(3.05×10³)
- M = 2.5×10² kg/s
Hence, the mass of fuel burned in each second is 2.5×10² kg/s.
Learn more about mass here: brainly.com/question/25121535
#SPJ1
Answer:
Keeping the speed fixed and decreasing the radius by a factor of 4
Explanation:
A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. The centripetal acceleration is given by :

We need to find how the "centripetal acceleration of the ball can be increased by a factor of 4"
It can be done by keeping the speed fixed and decreasing the radius by a factor of 4 such that,
R' = R/4
New centripetal acceleration will be,




So, the centripetal acceleration of the ball can be increased by a factor of 4.
Rutherford's experiment<span> utilized positively charged alpha particles (He with a +2 charge) which were deflected by the dense inner mass (nucleus). The conclusion that could be formed from this result was that </span>atoms<span> had an inner core which contained most of the mass of an </span>atom<span> and was positively charged.</span>
1. Encoding Information
2. Storing Information
3. Retrieval Information