Answer:
0.265
Explanation:
Draw a free body diagram. There are four forces:
Normal force Fn pushing up.
Weight force mg pulling down.
Tension force T at an angle θ.
Friction force Fn μ pushing left.
Sum the forces in the y direction:
∑F = ma
Fn + T sin θ − mg = 0
Fn = mg − T sin θ
Sum the forces in the x direction:
∑F = ma
T cos θ − Fn μ = 0
Fn μ = T cos θ
μ = T cos θ / Fn
μ = T cos θ / (mg − T sin θ)
Given T = 164 N, θ = 10.0°, m = 65.0 kg, and g = 9.8 m/s²:
μ = (164 N cos 10.0°) / (65.0 kg × 9.8 m/s² − 164 N sin 10.0°)
μ = 0.265
Answer:
3.62m/s and 2.83m/s
Explanation:
Apply conservation of momentum
For vertical component,
Pfy = Piy
m* Vof (sin38) - m*Vgf (sin52) = 0
Divide through by m
Vof(sin38) - Vgf(sin52) = 0
Vof(sin38) = Vgf(sin52)
Vof (sin38/sin52) = Vgf
0.7813Vof = Vgf
For horizontal component
Pxf= Pxi
m* Vof (cos38) - m*Vgf (cos52) = m*4.6
Divide through by m
Vof(cos38) + Vgf(cos52) = 4.6
Recall that
0.7813Vof = Vgf
Vof(cos38) + 0.7813 Vof(cos52) = 4.6
0.7880Vof + 0.4810Vof = 4.
1.269Vof = 4.6
Vof = 4.6/1.269
Vof = 3.62m/s
Recall that
0.7813Vof = Vgf
Vgf = 0.7813 * 3.62
Vgf = 2.83m/s
Look out below ! You should step nimbly to one side, to avoid being hit by one or the other of those hazardous weight objects when they arrive (at the same time).
The power require to keep the car traveling is 6,666 W.
The power of the engine at the given efficiency is 3,999.6 W.
<h3>What is Instantaneous power?</h3>
This the product of force and velocity of the given object.
The power require to keep the car traveling is calculated as follows;
P = Fv
The power of the engine at the given efficiency is calculated as follows;
Learn more about efficiency here: brainly.com/question/15418098