1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
6

Which condition must exist in order for conduction to occur between two substances?

Physics
2 answers:
velikii [3]3 years ago
8 0

Explanation:

When two objects of different temperature are held together by touching each other then there will be flow or transfer of heat from hotter object to cooler object. This process of exchange of heat is known as conduction.

For example, a metal spoon placed in a hot coffee mug shows flow of heat from coffee to the spoon.

Thus, we can conclude that a condition which must exist in order for conduction to occur between two substances is that the objects must be touching each other.

kicyunya [14]3 years ago
4 0
The two substances must be in contact with each other.
You might be interested in
What happens when you drop a sugar cube into a mug of hot tea
azamat
The sugar cube disolves
8 0
3 years ago
Read 2 more answers
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
A ball is thrown horizontally from the top of a 55 m building and lands 150 m from the base of the building. Ignore air resistan
PtichkaEL [24]

Answer:

a) t =3.349 s

b) V_x,i = 44.8 m/s

c) V_y,f = 32.85 m/s

d)  V = 55.55 m/s

Explanation:

Given:

- Total throw in x direction x(f) = 150 m

- Total distance traveled down y(f) = 55 m

Find:

a) How long is the rock in the air in seconds.  

b) What must have been the initial horizontal component of the velocity, in meters per second?

c) What is the vertical component of the velocity just before the rock hits the ground, in meters per second?

d) What is the magnitude of the velocity of the rock just before it hits the ground, in meters per second?

Solution:

- Use the second equation of motion in y direction:

                                 y(f) = y(0) + V_y,i*t + 0.5*g*t^2

- V_y,i = 0 (horizontal throw)

                                 55 = 0 + 0 + 0.5*(9.81)*t^2

                                 t = sqrt ( 55 * 2 / 9.81 )

                                 t =3.349 s

- Use the second equation of motion in x direction:

                                 x(f) = x(0) + V_x,i*t

                                 150 = 0 + V_x,i*3.349

                                  V_x,i = 150 / 3.349 = 44.8 m/s

- Use the first equation of motion in y direction:

                                 V_y,f = V_y,i + g*t

                                 V_y,f = 0 + 9.81*3.349

                                 V_y,f = 32.85 m/s

- The magnitude of velocity of ball when it hits the ground is:

                                 V^2 = V_y,f^2 + V_x,i^2

                                 V = sqrt (32.85^2 + 44.8^2)

                                 V = 55.55 m/s

5 0
3 years ago
The machine which turns in a power station​
Anna [14]

Answer:

generators

Explanation:

the machine which turns in a power station

4 0
3 years ago
Which players are usually the tallest on their team, and stay close to the basket so they can shoot and rebound the ball?
alexdok [17]

Answer:

Center

Explanation:

The center is the tallest player on each team, playing near the basket. On offense, the center tries to score on close shots and rebound. But on defense, the center tries to block opponents' shots and rebound their misses.

7 0
3 years ago
Other questions:
  • The Egyptians and Greek shared which belief about preparing for important dreams
    5·2 answers
  • Which of the following is a metal?<br> Calcium (Ca)<br> Iron (Fe)<br> Sodium (Na)<br> all of these
    13·1 answer
  • A beam of sunlight falling on a prism refracts and forms seven color bands. This illustrates that
    12·2 answers
  • What is a phase change? List 3 examples of a phase change.<br><br><br>HELP ASAP :3 ​
    11·1 answer
  • If the maximum time between the emitted and received pulse is 1/ 10 second, what is the farthest distance you could measure with
    12·1 answer
  • Gel electrophoresis is a technique used to separate nucleic acids by their _______.
    15·1 answer
  • Work is being done when
    9·1 answer
  • On a distance vs time graph, what does the line of an object at constant<br>speed look like?​
    5·1 answer
  • PLEASE HELP ASAPPPP!!!!!
    6·1 answer
  • Find the center of the galaxy with Shapley method
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!