Answer:
49.07 miles
Explanation:
Angle between two ships = 110° = θ
First ship speed = 22 mph
Second ship speed = 34 mph
Distance covered by first ship after 1.2 hours = 22×1.2 = 26.4 miles = b
Distance covered by second ship after 1.2 hours = 34×1.2 = 40.8 miles = c
Here the angle between the two sides of a triangle is 110° so from the law of cosines we get
a² = b²+c²-2bc cosθ
⇒a² = 26.4²+40.8²-2×26.4×40.8 cos110
⇒a² = 2408.4
⇒a = 49.07 miles
The object is not accelerating. I think I got this question right
Answer:
Explanation:
The combined wave only end up been more powerful than the Longitudinal wave. This means, the transverse wave is more powerful than the combined wave. In transverse wave, the oscillation is perpendicular to the direction of the wave, while in longitudinal wave, the motion of the movement of the object is parallel to the movement of the wave. And in combined wave, the movement of the medium is in a circular manner,
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
= 0.5 m/s²
Explanation:
- According to Newton's second law of motion, the resultant force is directly proportion to the rate of change of linear momentum.
Therefore;<em> F = ma , where F is the Force, m is the mass and a is the acceleration.</em>
<em>Thus; a = F/m</em>
<em>but; F = 5 N, and m = 10 kg</em>
<em> a = 5 /10</em>
<u>= 0.5 m/s²</u>