Yes it could, but you'd have to set up the process very carefully.
I see two major challenges right away:
1). Displacement of water would not be a wise method, since rock salt
is soluble (dissolves) in water. So as soon as you start lowering it into
your graduated cylinder full of water, its volume would immediately start
to decrease. If you lowered it slowly enough, you might even measure
a volume close to zero, and when you pulled the string back out of the
water, there might be nothing left on the end of it.
So you would have to choose some other fluid besides water ... one in
which rock salt doesn't dissolve. I don't know right now what that could
be. You'd have to shop around and find one.
2). Whatever fluid you did choose, it would also have to be less dense
than rock salt. If it's more dense, then the rock salt just floats in it, and
never goes all the way under. If that happens, then you have a tough
time measuring the total volume of the lump.
So the displacement method could perhaps be used, in principle, but
it would not be easy.
Answer: Option (A) is the correct answer.
Explanation:
Nitrogen is a non-metal and it is known that non-metals do not conduct electricity. Thus, it will be least conductive out of the given options.
Whereas antimony (Sb) is a metalloid. Metalloid are the substance that show properties of both metals and non-metals. Thus, antimony will conduct electricity.
On the other hand, bismuth (Bi) is a metal hence, it will conduct electricity.
Thus, we can conclude that the order from least conductive to most conductive will be nitrogen (N), antimony (Sb), bismuth (Bi).
Heat radiates from the fire and cooks the marshmallow because heat transfer.
Answer:
B. Velocity
Explanation:
The answer is Velocity because the def of velocity is the rate of constant speed in a given direction. I hope this helps, have a good night.
Answer:
co2
Explanation:
because carbon is a gas product