Answer:
true
Explanation:
True - Mass is a measure of an object's inertia. Objects with greater mass have a greater inertia; objects with less mass have less inertia.
<u>Answer:</u> The activation energy of the reaction is 124.6 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{79^oC}}{K_{26^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B79%5EoC%7D%7D%7BK_%7B26%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 79°C = 
= equilibrium constant at 26°C = 
= Activation energy of the reaction = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![26^oC=[26+273]K=299K](https://tex.z-dn.net/?f=26%5EoC%3D%5B26%2B273%5DK%3D299K)
= final temperature = ![79^oC=[79+273]K=352K](https://tex.z-dn.net/?f=79%5EoC%3D%5B79%2B273%5DK%3D352K)
Putting values in above equation, we get:
![\ln(\frac{0.394}{2.08\times 10^{-4}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{299}-\frac{1}{352}]\\\\E_a=124595J/mol=124.6kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B0.394%7D%7B2.08%5Ctimes%2010%5E%7B-4%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B299%7D-%5Cfrac%7B1%7D%7B352%7D%5D%5C%5C%5C%5CE_a%3D124595J%2Fmol%3D124.6kJ%2Fmol)
Hence, the activation energy of the reaction is 124.6 kJ/mol
Many organisms need clean drinking water and we also need moisture in the air for us to stay hydrated
Answer:
The correct answer would be - observing with the help of five senses.
Explanation:
To find and describe the physical properties of the given substance or the solution or liquid students can observe using their five senses. By looking at the liquid one can find its state and color, by smelling students can find the odor of the sample, by touching it one can observe and describe the texture.
Fluidity can also be measure by the touch if the solution is viscous or free-floating. By using a thermometer and using a graduated cylinder one can find the temperature at room temperature and the weight of substance respectively.