Human muscle protein differ from a cow muscle protein molecule in the terms of number of mitochondria present, as in human number of mitochondria present is lesser than that of present in cow. Human muscles are not designed to do as much physical work as cows muscles are. Cow's muscles have more mitochondria so that they can generate ATP for physical activity without quickly defaulting to fermentation.
Water has hydrogen bonds between Hydrogen atoms (that are slightly positive in molecules of water ) and Oxygen atoms (that are slightly negative in molecules of water), so it is necessary more energy to break them down and move water molecules from liquid state to gas.
Answer:
I think this answer should be 2.33 g H2O
Answer:
The correct answer is 0.033 M
Explanation:
We have a solution of NaClO with a concentration of 5%w/w:
5% w/w= 5 g NaClO/100 g solution
The first dilution is 10 ml of solution in 100 ml. That is a 1/10 dilution (10ml/100 ml= 1/10). That means we are diluting 10 times the solution. We can calculate the resulting concentration after this first dilution as follows:
5%w/w x 10 ml/100 ml = 5% w/w/10= 0.5%w/w
Then, we take 6 ml of 0.5% w/w solution and we add 6 ml of dye in a reaction vessel. The total volume of the solution in the reaction vessel is 6 ml + 6 ml= 12 ml, and we are diluting twice the solution because 6 ml/12 ml= 1/2. We can calculate the resulting concentration of the solution after this second dilution as follows:
0.5% w/w x 6 ml/12 ml= 0.5% w/w/2= 0.25%w/w
Finally, we need to convert the concentration from %w/w to M (mol solution/1L solution). For this, we assume a density of the solution close to the density of water (1.00 g/ml) and we use the molecular weight of NaClO (74.44 g/mol):
0.25 g NaClO/100 g solution x 1 mol NaClO/74.44 g x 1.00 g solution/1 ml x 100 ml/0.1 L= 0.033 mol/L
= 0.033 M